SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Rajatheva N.) "

Search: WFRF:(Rajatheva N.)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Carvalho, E. de, et al. (author)
  • EU FP7 INFSO-ICT-317669 METIS, D3.1 Positioning of multi-node/multi-antenna technologies
  • 2013
  • Reports (other academic/artistic)abstract
    • This document describes the research activity in multi-node/multi-antenna technologies within METIS and positions it with respect to the state-of-the-art in the academic literature and in the standardization bodies. Based on the state-of-the-art and as well as on the METIS objectives,we set the research objectives and we group the different activities (or technology components) into research clusters with similar research objectives. The technologycomponents and the research objectives have been set to achieve an ambidextrous purpose. On one side we aim at providing the METIS system with those technological components that are a natural but non-trivial evolution of 4G. On the other side, we aim at seeking for disruptivetechnologies that could radically change 5G with respect to 4G. Moreover, we mapped the different technology components to METIS’ other activities and to the overall goals of theproject.
  •  
2.
  • Fantini, R, et al. (author)
  • EU FP7 INFSO-ICT-317669 METIS, D3.2 First performance results for multi-node/multi-antenna transmission technologies
  • 2014
  • Reports (other academic/artistic)abstract
    • This deliverable describes the current results of the multi-node/multi-antenna technologies investigated within METIS and analyses the interactions within and outside Work Package 3. Furthermore, it identifies the most promising technologies based on the current state of obtained results. This document provides a brief overview of the results in its first part. The second part, namely the Appendix, further details the results, describes the simulation alignment efforts conducted in the Work Package and the interaction of the Test Cases. The results described here show that the investigations conducted in Work Package 3 are maturing resulting in valuable innovative solutions for future 5G systems.
  •  
3.
  • Fodor, G., et al. (author)
  • An Overview of Device-to-Device Communications Technology Components in METIS
  • 2016
  • In: IEEE Access. - : Institute of Electrical and Electronics Engineers (IEEE). - 2169-3536 .- 2169-3536. ; 4, s. 3288-3299
  • Journal article (peer-reviewed)abstract
    • As the standardization of network-assisted device-to-device (D2D) communications by the Third Generation Partnership Project progresses, the research community has started to explore the technology potential of new advanced features that will largely impact the performance of 5G networks. For 5G, D2D is becoming an integrative term of emerging technologies that take an advantage of the proximity of communicating entities in licensed and unlicensed spectra. The European 5G research project Mobile and Wireless Communication Enablers for the 2020 Information Society (METIS) has identified advanced D2D as a key enabler for a variety of 5G services, including cellular coverage extension, social proximity, and communicating vehicles. In this paper, we review the METIS D2D technology components in three key areas of proximal communications-network-assisted multi-hop, full-duplex, and multi-antenna D2D communications-and argue that the advantages of properly combining cellular and ad hoc technologies help to meet the challenges of the information society beyond 2020.
  •  
4.
  • Fodor, Gabor, et al. (author)
  • An Overview of Massive MIMO Technology Components in METIS
  • 2017
  • In: IEEE Communications Magazine. - : Institute of Electrical and Electronics Engineers (IEEE). - 0163-6804 .- 1558-1896. ; 55:6, s. 155-161
  • Journal article (peer-reviewed)abstract
    • As the standardization of full-dimension MIMO systems in the Third Generation Partnership Project progresses, the research community has started to explore the potential of very large arrays as an enabler technology for meeting the requirements of fifth generation systems. Indeed, in its final deliverable, the European 5G project METIS identifies massive MIMO as a key 5G enabler and proposes specific technology components that will allow the cost-efficient deployment of cellular systems taking advantage of hundreds of antennas at cellular base stations. These technology components include handling the inherent pilot-data resource allocation trade-off in a near optimal fashion, a novel random access scheme supporting a large number of users, coded channel state information for sparse channels in frequency-division duplexing systems, managing user grouping and multi-user beamforming, and a decentralized coordinated transceiver design. The aggregate effect of these components enables massive MIMO to contribute to the METIS objectives of delivering very high data rates and managing dense populations.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view