SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ranåker L) "

Search: WFRF:(Ranåker L)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Ferrari, Maud C. O., et al. (author)
  • Effects of turbidity and an invasive waterweed on predation by introduced largemouth bass
  • 2014
  • In: Environmental Biology of Fishes. - : Springer Science and Business Media LLC. - 0378-1909 .- 1573-5133. ; 97:1, s. 79-90
  • Journal article (peer-reviewed)abstract
    • Anthropogenic activities lead to changes in characteristics of aquatic ecosystems, including alteration of turbidity and addition of invasive species. In this study, we tested how changes in turbidity and the recent invasion of an aquatic macrophyte, Egeria densa, may have changed the predation pressure by introduced largemouth bass on juvenile striped bass and delta smelt, two species that have seen a drastic decline in recent decades in the Sacramento-San Joaquin Delta. In a series of mesocosm experiments, we showed that increases in vegetation density decreased the predation success of largemouth bass. When placed in an environment with both open water and vegetated areas, and given a choice to forage on prey associated with either of these habitats, largemouth bass preyed mainly on open water species as opposed to vegetation-associated species, such as juvenile largemouth bass, bluegill or red swamp crayfish. Finally, we showed that turbidity served as cover to open water species and increased the survival of delta smelt, an endemic species at risk. We also found that such open water prey tend not to seek refuge in the vegetation cover, even in the presence of an imminent predation threat. These results provide the beginning of a mechanistic framework to explain how decreases in turbidity and increases in vegetation cover correlate with a decline of open water species in the Sacramento-San Joaquin Delta.
  •  
3.
  • Nilsson, P. A., et al. (author)
  • First-season growth and food of YOY pike (Esox lucius) are habitat specific within a lake
  • 2023
  • In: Fisheries Research. - : Elsevier BV. - 0165-7836. ; 259
  • Journal article (peer-reviewed)abstract
    • Piscivorous fish are important predators in aquatic systems and as such they can have far-reaching effects on ecosystem composition and function. These effects depend on piscivore predation rates and behaviour, and recruitment of young-of-the-year fish into piscivory can hereby govern ecosystem properties. Growth and recruitment can differ between water bodies due to e.g. general productivity, but information on variation in juvenile growth and body condition between habitats within water bodies is scant. We here evaluate growth, body condition, food occurrence and stomach contents of an important piscivore, pike (Esox lucius), over the first growth season in two contrasting and spatially separated homogenous habitat types (emergent and submerged vegetation separated by 50 m of open sand) within the same lake. Individual size and body condition in pike were higher in the submerged vegetation early in the season, whereas by the end of their first summer pike were larger and in higher body condition in the emergent vegetation, in spite of occurrence of zooplankton, macroinvertebrates and fish prey being overall higher in the submerged vegetation. Pike showed habitat-specific patterns of macroinvertebrate consumption (higher in the submerged vegetation) and date-specific patterns of zooplankton (higher early in the season), macroinvertebrate (lower late in the season) and fish (higher later in the season) consumption that were not a result of occurrence of food types, as occurrence and consumption patterns did not match. We conclude that pike that hatched in the emergent vegetation habitat were larger towards the end of the season and, hence, these pike should have a higher survival probability and possibly contribute more to pike population density and predation at older ages, but also that submerged vegetation provides an alternative and added recruitment environment for pike in shallow lake ecosystems.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view