SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Raza Shahzad) "

Search: WFRF:(Raza Shahzad)

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Khatri, C, et al. (author)
  • Outcomes after perioperative SARS-CoV-2 infection in patients with proximal femoral fractures: an international cohort study
  • 2021
  • In: BMJ open. - : BMJ. - 2044-6055. ; 11:11, s. e050830-
  • Journal article (peer-reviewed)abstract
    • Studies have demonstrated high rates of mortality in people with proximal femoral fracture and SARS-CoV-2, but there is limited published data on the factors that influence mortality for clinicians to make informed treatment decisions. This study aims to report the 30-day mortality associated with perioperative infection of patients undergoing surgery for proximal femoral fractures and to examine the factors that influence mortality in a multivariate analysis.SettingProspective, international, multicentre, observational cohort study.ParticipantsPatients undergoing any operation for a proximal femoral fracture from 1 February to 30 April 2020 and with perioperative SARS-CoV-2 infection (either 7 days prior or 30-day postoperative).Primary outcome30-day mortality. Multivariate modelling was performed to identify factors associated with 30-day mortality.ResultsThis study reports included 1063 patients from 174 hospitals in 19 countries. Overall 30-day mortality was 29.4% (313/1063). In an adjusted model, 30-day mortality was associated with male gender (OR 2.29, 95% CI 1.68 to 3.13, p<0.001), age >80 years (OR 1.60, 95% CI 1.1 to 2.31, p=0.013), preoperative diagnosis of dementia (OR 1.57, 95% CI 1.15 to 2.16, p=0.005), kidney disease (OR 1.73, 95% CI 1.18 to 2.55, p=0.005) and congestive heart failure (OR 1.62, 95% CI 1.06 to 2.48, p=0.025). Mortality at 30 days was lower in patients with a preoperative diagnosis of SARS-CoV-2 (OR 0.6, 95% CI 0.6 (0.42 to 0.85), p=0.004). There was no difference in mortality in patients with an increase to delay in surgery (p=0.220) or type of anaesthetic given (p=0.787).ConclusionsPatients undergoing surgery for a proximal femoral fracture with a perioperative infection of SARS-CoV-2 have a high rate of mortality. This study would support the need for providing these patients with individualised medical and anaesthetic care, including medical optimisation before theatre. Careful preoperative counselling is needed for those with a proximal femoral fracture and SARS-CoV-2, especially those in the highest risk groups.Trial registration numberNCT04323644
  •  
3.
  • Thomas, HS, et al. (author)
  • 2019
  • swepub:Mat__t
  •  
4.
  • Bravo, L, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
5.
  • Tabiri, S, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
6.
  • Andersson, Joel, 1981-, et al. (author)
  • HIP-Densification of Alloy 718 and ATI 718Plus
  • 2014
  • In: 8th International Symposium on Superalloy 718 and Derivatives. - Hoboken, NJ, USA : John Wiley & Sons. - 9781119016809 - 9781119016854 ; , s. 425-436
  • Conference paper (peer-reviewed)
  •  
7.
  • Haneef, Tahir, et al. (author)
  • Recent progress in two dimensional Mxenes for photocatalysis : a critical review
  • 2023
  • In: 2D Materials. - : Institute of Physics (IOP). - 2053-1583. ; 10:1
  • Research review (peer-reviewed)abstract
    • Transition metal carbides and nitrides, generally known as MXenes have emerged as an alternative to improve photocatalytic performance in renewable energy and environmental remediation applications because of their high surface area, tunable chemistry, and easily adjustable elemental compositions. MXenes have many interlayer groups, surface group operations, and a flexible layer spacing that makes them ideal catalysts. Over 30 different members of the MXenes family have been explored and successfully utilized as catalysts. Particularly, MXenes have achieved success as a photocatalyst for carbon dioxide reduction, nitrogen fixation, hydrogen evolution, and photochemical degradation. The structure of MXenes and the presence of hydrophilic functional groups on the surface results in excellent photocatalytic hydrogen evolution. In addition, MXenes' surface defects provide abundant CO2 adsorption sites. Moreover, their highly efficient catalytic oxidation activity is a result of their excellent two-dimensional nanomaterial structure and high-speed electron transport channels. This article comprehensively discusses the structure, synthesis techniques, photocatalytic applications (i.e. H-2 evolution, N-2 fixation, CO2 reduction, and degradation of pollutants), and recyclability of MXenes. This review also critically evaluates the MXene-based heterostructure and composites photocatalyst synthesis process and their performance for organic pollutant degradation. Finally, a prospect for further research is presented in environmental and energy sciences.
  •  
8.
  • Hussain, Syed Asad, et al. (author)
  • Multilevel classification of security concerns in cloud computing
  • 2017
  • In: Applied Computing and Informatics. - : Elsevier B.V.. - 2210-8327. ; 13:1, s. 57-65
  • Journal article (peer-reviewed)abstract
    • Threats jeopardize some basic security requirements in a cloud. These threats generally constitute privacy breach, data leakage and unauthorized data access at different cloud layers. This paper presents a novel multilevel classification model of different security attacks across different cloud services at each layer. It also identifies attack types and risk levels associated with different cloud services at these layers. The risks are ranked as low, medium and high. The intensity of these risk levels depends upon the position of cloud layers. The attacks get more severe for lower layers where infrastructure and platform are involved. The intensity of these risk levels is also associated with security requirements of data encryption, multi-tenancy, data privacy, authentication and authorization for different cloud services. The multilevel classification model leads to the provision of dynamic security contract for each cloud layer that dynamically decides about security requirements for cloud consumer and provider. © 2016 King Saud University
  •  
9.
  • Shahzad, Danish, et al. (author)
  • Novel C-2 Symmetric Molecules as -Glucosidase and -Amylase Inhibitors : Design, Synthesis, Kinetic Evaluation, Molecular Docking and Pharmacokinetics
  • 2019
  • In: Molecules. - : MDPI. - 1431-5157 .- 1420-3049. ; 24:8
  • Journal article (peer-reviewed)abstract
    • A series of symmetrical salicylaldehyde-bishydrazine azo molecules, 5a-5h, have been synthesized, characterized by H-1-NMR and C-13-NMR, and evaluated for their in vitro -glucosidase and -amylase inhibitory activities. All the synthesized compounds efficiently inhibited both enzymes. Compound 5g was the most potent derivative in the series, and powerfully inhibited both -glucosidase and -amylase. The IC50 of 5g against -glucosidase was 0.35917 +/- 0.0189 mu M (standard acarbose IC50 = 6.109 +/- 0.329 mu M), and the IC50 value of 5g against -amylase was 0.4379 +/- 0.0423 mu M (standard acarbose IC50 = 33.178 +/- 2.392 mu M). The Lineweaver-Burk plot indicated that compound 5g is a competitive inhibitor of -glucosidase. The binding interactions of the most active analogues were confirmed through molecular docking studies. Docking studies showed that 5g interacts with the residues Trp690, Asp548, Arg425, and Glu426, which form hydrogen bonds to 5g with distances of 2.05, 2.20, 2.10 and 2.18 angstrom, respectively. All compounds showed high mutagenic and tumorigenic behaviors, and only 5e showed irritant properties. In addition, all the derivatives showed good antioxidant activities. The pharmacokinetic evaluation also revealed promising results
  •  
10.
  • Yameen, Muhammad Zubair, et al. (author)
  • Biodiesel production from marine macroalgae Ulva lactuca lipids using novel Cu-BTC@AC catalyst : Parametric analysis and optimization
  • 2024
  • In: Energy Conversion and Management. - : Elsevier. - 2590-1745. ; 23
  • Journal article (peer-reviewed)abstract
    • The pursuit of renewable fuels for the transportation sector, particularly for combustion engines like diesel, is crucial in reducing greenhouse gas emissions. This study introduces an innovative strategy for biodiesel production utilizing marine macroalgae Ulva lactuca as the primary feedstock, emphasizing sustainability and resource efficiency. Lipids were extracted from the macroalgae via a Soxhlet process and characterized using GC–MS and FTIR to ascertain fatty acid composition and functional groups. The Cu–BTC@AC catalyst, synthesized from the lipid-extracted algae residue via pyrolysis and hydrothermal treatment, underwent characterization using SEM–EDS, XRD, and FTIR techniques. Subsequently, the Cu–BTC@AC catalyst was employed in the transesterification process to efficiently convert the extracted algal lipids into biodiesel, achieving a high yield of 92.56 % under RSM-optimized conditions: 65 °C temperature, 3.96 wt% catalyst amount, 15:1 methanol-to-lipid ratio, and 140 min reaction time. Kinetic and thermodynamic parameters for biodiesel production were calculated as follows: Ea = 33.20 kJ mol−1, ΔH# = 30.39 kJ mol−1, ΔS# = –165.86 J mol−1 K−1, and ΔG# = 86.48 kJ mol−1. GC–MS analysis identified a significant FAME content in the biodiesel, comprising 98.12 % of its composition. Notably, the Cu–BTC@AC catalyst exhibited excellent reusability, maintaining 80.21 % biodiesel yield after the third cycle. Moreover, physicochemical analysis of the biodiesel confirmed its compliance with ASTM D6751 specifications, underscoring its potential as a viable alternative fuel for the transportation sector.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view