SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Read Timothy D.) "

Search: WFRF:(Read Timothy D.)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Falster, Daniel, et al. (author)
  • AusTraits, a curated plant trait database for the Australian flora
  • 2021
  • In: Scientific Data. - : Nature Portfolio. - 2052-4463. ; 8:1
  • Journal article (peer-reviewed)abstract
    • We introduce the AusTraits database - a compilation of values of plant traits for taxa in the Australian flora (hereafter AusTraits). AusTraits synthesises data on 448 traits across 28,640 taxa from field campaigns, published literature, taxonomic monographs, and individual taxon descriptions. Traits vary in scope from physiological measures of performance (e.g. photosynthetic gas exchange, water-use efficiency) to morphological attributes (e.g. leaf area, seed mass, plant height) which link to aspects of ecological variation. AusTraits contains curated and harmonised individual- and species-level measurements coupled to, where available, contextual information on site properties and experimental conditions. This article provides information on version 3.0.2 of AusTraits which contains data for 997,808 trait-by-taxon combinations. We envision AusTraits as an ongoing collaborative initiative for easily archiving and sharing trait data, which also provides a template for other national or regional initiatives globally to fill persistent gaps in trait knowledge.
  •  
2.
  • Balthazar, Jacqueline T., et al. (author)
  • A laboratory-based predictive pathway for the development of Neisseria gonorrhoeae high-level resistance to corallopyronin A, an inhibitor of bacterial RNA polymerase
  • 2024
  • In: Microbiology Spectrum. - : American Society for Microbiology. - 2165-0497. ; 12:6
  • Journal article (peer-reviewed)abstract
    • The continued emergence of Neisseria gonorrhoeae strains that express resistance to multiple antibiotics, including the last drug for empiric monotherapy (ceftriaxone), necessitates the development of new treatment options to cure gonorrheal infections. Toward this goal, we recently reported that corallopyronin A (CorA), which targets the switch region of the β' subunit (RpoC) of bacterial DNA-dependent RNA polymerase (RNAP), has potent anti-gonococcal activity against a panel of multidrug-resistant clinical strains. Moreover, in that study, CorA could eliminate gonococcal infection of primary human epithelial cells and gonococci in a biofilm state. To determine if N. gonorrhoeae could develop high-level resistance to CorA in a single step, we sought to isolate spontaneous mutants expressing any CorA resistance phenotypes. However, no single-step mutants with high-level CorA resistance were isolated. High-level CorA resistance could only be achieved in this study through a multi-step pathway involving over-expression of the MtrCDE drug efflux pump and single amino acid changes in the β and β' subunits (RpoB and RpoC, respectively) of RNAP. Molecular modeling of RpoB and RpoC interacting with CorA was used to deduce how the amino acid changes in RpoB and RpoC could influence gonococcal resistance to CorA. Bioinformatic analyses of whole genome sequences of clinical gonococcal isolates indicated that the CorA resistance determining mutations in RpoB/C, identified herein, are very rare (≤ 0.0029%), suggesting that the proposed pathway for resistance is predictive of how this phenotype could potentially evolve if CorA is used therapeutically to treat gonorrhea in the future. IMPORTANCE: The continued emergence of multi-antibiotic-resistant strains of Neisseria gonorrhoeae necessitates the development of new antibiotics that are effective against this human pathogen. We previously described that the RNA polymerase-targeting antibiotic corallopyronin A (CorA) has potent activity against a large collection of clinical strains that express different antibiotic resistance phenotypes including when such gonococci are in a biofilm state. Herein, we tested whether a CorA-sensitive gonococcal strain could develop spontaneous resistance. Our finding that CorA resistance could only be achieved by a multi-step process involving over-expression of the MtrCDE efflux pump and single amino acid changes in RpoB and RpoC suggests that such resistance may be difficult for gonococci to evolve if this antibiotic is used in the future to treat gonorrheal infections that are refractory to cure by other antibiotics.
  •  
3.
  • Currier, Russell W, et al. (author)
  • The evolution of infectious agents in relation to sex in animals and humans: brief discussions of some individual organisms.
  • 2011
  • In: Annals of the New York Academy of Sciences. - : Wiley. - 1749-6632 .- 0077-8923. ; 1230, s. 74-107, s. 74-107
  • Research review (peer-reviewed)abstract
    • The following series of concise summaries addresses the evolution of infectious agents in relation to sex in animals and humans from the perspective of three specific questions: (1) what have we learned about the likely origin and phylogeny, up to the establishment of the infectious agent in the genital econiche, including the relative frequency of its sexual transmission; (2) what further research is needed to provide additional knowledge on some of these evolutionary aspects; and (3) what evolutionary considerations might aid in providing novel approaches to the more practical clinical and public health issues facing us currently and in the future?
  •  
4.
  • Edwards, Jennifer L., et al. (author)
  • Potent In Vitro and Ex Vivo Anti-Gonococcal Activity of the RpoB Inhibitor Corallopyronin A
  • 2022
  • In: mSphere. - : American Society for Microbiology. - 2379-5042. ; 7:5
  • Journal article (peer-reviewed)abstract
    • Gonorrhea remains a major global public health problem because of the high incidence of infection (estimated 82 million cases in 2020) and the emergence and spread of Neisseria gonorrhoeae strains resistant to previous and current antibiotics used to treat infections. Given the dearth of new antibiotics that are likely to enter clinical practice in the near future, there is concern that cases of untreatable gonorrhea might emerge. In response to this crisis, the World Health Organization (WHO), in partnership with the Global Antibiotic Research and Development Partnership (GARDP), has made the search for and development of new antibiotics against N. gonorrhoeae a priority. Ideally, these antibiotics should also be active against other sexually transmitted organisms, such as Chlamydia trachomatis and/or Mycoplasma genitalium, which are often found with N. gonorrhoeae as co-infections. Corallopyronin A is a potent antimicrobial that exhibits activity against Chlamydia spp. and inhibits transcription by binding to the RpoB switch region. Accordingly, we tested the effectiveness of corallopyronin A against N. gonorrhoeae. We also examined the mutation frequency and modes of potential resistance against corallopyronin A. We report that corallopyronin A has potent antimicrobial action against antibiotic-susceptible and antibiotic-resistant N. gonorrhoeae strains and could eradicate gonococcal infection of cultured, primary human cervical epithelial cells. Critically, we found that spontaneous corallopyronin A-resistant mutants of N. gonorrhoeae are exceedingly rare (≤10-10) when selected at 4× the MIC. Our results support pre-clinical studies aimed at developing corallopyronin A for gonorrheal treatment regimens.IMPORTANCE The high global incidence of gonorrhea, the lack of a protective vaccine, and the emergence of N. gonorrhoeae strains expressing resistance to currently used antibiotics demand that new treatment options be developed. Accordingly, we investigated whether corallopyronin A, an antibiotic which is effective against other pathogens, including C. trachomatis, which together with gonococci frequently cause co-infections in humans, could exert anti-gonococcal action in vitro and ex vivo, and potential resistance emergence. We propose that corallopyronin A be considered a potential future treatment option for gonorrhea because of its potent activity, low resistance development, and recent advances in scalable production.
  •  
5.
  • Ezewudo, Matthew N., et al. (author)
  • Population structure of Neisseria gonorrhoeae based on whole genome data and its relationship with antibiotic resistance
  • 2015
  • In: PeerJ. - : PeerJ Inc.. - 2167-8359. ; 3
  • Journal article (peer-reviewed)abstract
    • Neisseria gonorrhoeae is the causative agent of gonorrhea, a sexually transmitted infection (STI) of major importance. As a result of antibiotic resistance, there are now limited options for treating patients. We collected draft genome sequence data and associated metadata data on 76 N. gonorrhoeae strains from around the globe and searched for known determinants of antibiotics resistance within the strains. The population structure and evolutionary forces within the pathogen population were analyzed. Our results indicated a cosmopolitan gonoccocal population mainly made up of five subgroups. The estimated ratio of recombination to mutation (r/m = 2.2) from our data set indicates an appreciable level of recombination occurring in the population. Strains with resistance phenotypes to more recent antibiotics (azithromycin and cefixime) were mostly found in two of the five population subgroups.
  •  
6.
  • Holley, Concerta L., et al. (author)
  • A Single Amino Acid Substitution in Elongation Factor G Can Confer Low-Level Gentamicin Resistance in Neisseria gonorrhoeae
  • 2022
  • In: Antimicrobial Agents and Chemotherapy. - : American Society for Microbiology. - 0066-4804 .- 1098-6596. ; 66:5
  • Journal article (peer-reviewed)abstract
    • The continued emergence of Neisseria gonorrhoeae isolates which are resistant to first-line antibiotics has reinvigorated interest in alternative therapies such as expanded use of gentamicin (Gen). We hypothesized that expanded use of Gen promotes emergence of gonococci with clinical resistance to this aminoglycoside. To understand how decreased susceptibility of gonococci to Gen might develop, we selected spontaneous low-level Gen-resistant (GenR) mutants (Gen MIC = 32 μg/mL) of the Gen-susceptible strain FA19. Consequently, we identified a novel missense mutation in fusA, which encodes elongation factor G (EF-G), causing an alanine (A) to valine (V) substitution at amino acid position 563 in domain IV of EF-G; the mutant allele was termed fusA2. Transformation analysis showed that fusA2 could increase the Gen MIC by 4-fold. While possession of fusA2 did not impair either in vitro gonococcal growth or protein synthesis, it did result in a fitness defect during experimental infection of the lower genital tract in female mice. Through bioinformatic analysis of whole-genome sequences of 10,634 international gonococcal clinical isolates, other fusA alleles were frequently detected, but genetic studies revealed that they could not decrease Gen susceptibility in a similar manner to fusA2. In contrast to these diverse international fusA alleles, the fusA2-encoded A563V substitution was detected in only a single gonococcal clinical isolate. We hypothesize that the rare occurrence of fusA2 in N. gonorrhoeae clinical isolates is likely due to a fitness cost during infection, but compensatory mutations which alleviate this fitness cost could emerge and promote GenR in global strains.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view