SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ribadeneyra Maria) "

Search: WFRF:(Ribadeneyra Maria)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Tapia-Ruiz, Nuria, et al. (author)
  • 2021 roadmap for sodium-ion batteries
  • 2021
  • In: Journal of Physics. - : Institute of Physics Publishing (IOPP). - 2515-7655. ; 3:3
  • Journal article (peer-reviewed)abstract
    • Increasing concerns regarding the sustainability of lithium sources, due to their limited availability and consequent expected price increase, have raised awareness of the importance of developing alternative energy-storage candidates that can sustain the ever-growing energy demand. Furthermore, limitations on the availability of the transition metals used in the manufacturing of cathode materials, together with questionable mining practices, are driving development towards more sustainable elements. Given the uniformly high abundance and cost-effectiveness of sodium, as well as its very suitable redox potential (close to that of lithium), sodium-ion battery technology offers tremendous potential to be a counterpart to lithium-ion batteries (LIBs) in different application scenarios, such as stationary energy storage and low-cost vehicles. This potential is reflected by the major investments that are being made by industry in a wide variety of markets and in diverse material combinations. Despite the associated advantages of being a drop-in replacement for LIBs, there are remarkable differences in the physicochemical properties between sodium and lithium that give rise to different behaviours, for example, different coordination preferences in compounds, desolvation energies, or solubility of the solid-electrolyte interphase inorganic salt components. This demands a more detailed study of the underlying physical and chemical processes occurring in sodium-ion batteries and allows great scope for groundbreaking advances in the field, from lab-scale to scale-up. This roadmap provides an extensive review by experts in academia and industry of the current state of the art in 2021 and the different research directions and strategies currently underway to improve the performance of sodium-ion batteries. The aim is to provide an opinion with respect to the current challenges and opportunities, from the fundamental properties to the practical applications of this technology.
  •  
2.
  • Ribadeneyra, Maria, et al. (author)
  • Lignin-derived electrospun freestanding carbons as alternative electrodes for redox flow batteries
  • 2020
  • In: Carbon. - : Elsevier Ltd. - 0008-6223 .- 1873-3891. ; 157, s. 847-856
  • Journal article (peer-reviewed)abstract
    • Redox flow batteries represent a remarkable alternative for grid-scale energy storage. They commonly employ carbon felts or carbon papers, which suffer from low activity towards the redox reactions involved, leading to poor performance. Here we propose the use of electrospun freestanding carbon materials derived from lignin as alternative sustainable electrodes for all-vanadium flow batteries. The lignin-derived carbon electrospun mats exhibited a higher activity towards the VO2 +/VO2+ reaction than commercial carbon papers when tested in a three-electrode electrochemical cell (or half-cell), which we attribute to the higher surface area and higher amount of oxygen functional groups at the surface. The electrospun carbon electrodes also showed performance comparable to commercial carbon papers, when tested in a full cell configuration. The modification of the surface chemistry with the addition of phosphorous produced different effect in both samples, which needs further investigation. This work demonstrates for the first time the application of sustainably produced electrospun lignin-derived carbon electrodes in a redox flow cell, with comparable performance to commercial materials and establishes the great potential of biomass-derived carbons in energy devices.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view