SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Richey L.) "

Search: WFRF:(Richey L.)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Cunha, M. S., et al. (author)
  • Rotation and pulsation in Ap stars : first light results from TESS sectors 1 and 2
  • 2019
  • In: Monthly notices of the Royal Astronomical Society. - : OXFORD UNIV PRESS. - 0035-8711 .- 1365-2966. ; 487:3, s. 3523-3549
  • Journal article (peer-reviewed)abstract
    • We present the first results from the Transiting Exoplanet Survey Satellite (TESS) on the rotational and pulsational variability of magnetic chemically peculiar A-type stars. We analyse TESS 2-min cadence data from sectors 1 and 2 on a sample of 83 stars. Five new rapidly oscillating Ap (roAp) stars are announced. One of these pulsates with periods around 4.7 min, making it the shortest period roAp star known to date. Four out of the five new roAp stars are multiperiodic. Three of these and the singly periodic one show the presence of rotational mode splitting. Individual frequencies are provided in all cases. In addition, seven previously known roAp stars are analysed. Additional modes of oscillation are found in some stars, while in others we are able to distinguish the true pulsations from possible aliases present in the ground-based data. We find that the pulsation amplitude in the TESS filter is typically a factor of 6 smaller than that in the B filter, which is usually used for ground-based observations. For four roAp stars we set constraints on the inclination angle and magnetic obliquity, through the application of the oblique pulsator model. We also confirm the absence of roAp-type pulsations down to amplitude limits of 6 and 13 mu mag, respectively, in two of the best characterized non-oscillating Ap (noAp) stars. We announce 27 new rotational variables along with their rotation periods, and provide different rotation periods for seven other stars. Finally, we discuss how these results challenge state-of-the-art pulsation models for roAp stars.
  •  
2.
  • Holdsworth, D. L., et al. (author)
  • TESS cycle 1 observations of roAp stars with 2-min cadence data
  • 2021
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 506:1, s. 1073-1110
  • Journal article (peer-reviewed)abstract
    • We present the results of a systematic search for new rapidly oscillating Ap (roAp) stars using the 2-min cadence data collected by the Transiting Exoplanet Survey Satellite (TESS) during its Cycle 1 observations. We identify 12 new roAp stars. Amongst these stars we discover the roAp star with the longest pulsation period, another with the shortest rotation period, and six with multiperiodic variability. In addition to these new roAp stars, we present an analysis of 44 known roAp stars observed by TESS during Cycle 1, providing the first high-precision and homogeneous sample of a significant fraction of the known roAp stars. The TESS observations have shown that almost 60 percent (33) of our sample of stars are multiperiodic, providing excellent cases to test models of roAp pulsations, and from which the most rewarding asteroseismic results can be gleaned. We report four cases of the occurrence of rotationally split frequency multiplets that imply different mode geometries for the same degree modes in the same star. This provides a conundrum in applying the oblique pulsator model to the roAp stars. Finally, we report the discovery of non-linear mode interactions in alpha Cir (TIC402546736, HD128898) around the harmonic of the principal mode - this is only the second case of such a phenomenon.
  •  
3.
  • Zurcher, N. R., et al. (author)
  • C-11 PBR28 MR-PET imaging reveals lower regional brain expression of translocator protein (TSPO) in young adult males with autism spectrum disorder
  • 2021
  • In: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578.
  • Journal article (peer-reviewed)abstract
    • Mechanisms of neuroimmune and mitochondrial dysfunction have been repeatedly implicated in autism spectrum disorder (ASD). To examine these mechanisms in ASD individuals, we measured the in vivo expression of the 18 kDa translocator protein (TSPO), an activated glial marker expressed on mitochondrial membranes. Participants underwent scanning on a simultaneous magnetic resonance-positron emission tomography (MR-PET) scanner with the second-generation TSPO radiotracer [C-11]PBR28. By comparing TSPO in 15 young adult males with ASD with 18 age- and sex-matched controls, we showed that individuals with ASD exhibited lower regional TSPO expression in several brain regions, including the bilateral insular cortex, bilateral precuneus/posterior cingulate cortex, and bilateral temporal, angular, and supramarginal gyri, which have previously been implicated in autism in functional MR imaging studies. No brain region exhibited higher regional TSPO expression in the ASD group compared with the control group. A subset of participants underwent a second MR-PET scan after a median interscan interval of 3.6 months, and we determined that TSPO expression over this period of time was stable and replicable. Furthermore, voxelwise analysis confirmed lower regional TSPO expression in ASD at this later time point. Lower TSPO expression in ASD could reflect abnormalities in neuroimmune processes or mitochondrial dysfunction.
  •  
4.
  • Hill, M. S., et al. (author)
  • Reconstruction of Family-Level Phylogenetic Relationships within Demospongiae (Porifera) Using Nuclear Encoded Housekeeping Genes
  • 2013
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:1, s. e50437-
  • Journal article (peer-reviewed)abstract
    • Background: Demosponges are challenging for phylogenetic systematics because of their plastic and relatively simple morphologies and many deep divergences between major clades. To improve understanding of the phylogenetic relationships within Demospongiae, we sequenced and analyzed seven nuclear housekeeping genes involved in a variety of cellular functions from a diverse group of sponges. Methodology/Principal Findings: We generated data from each of the four sponge classes (i.e., Calcarea, Demospongiae, Hexactinellida, and Homoscleromorpha), but focused on family-level relationships within demosponges. With data for 21 newly sampled families, our Maximum Likelihood and Bayesian-based approaches recovered previously phylogenetically defined taxa: Keratosap, Myxospongiaep, Spongillidap, Haploscleromorphap (the marine haplosclerids) and Democlaviap. We found conflicting results concerning the relationships of Keratosap and Myxospongiaep to the remaining demosponges, but our results strongly supported a clade of Haploscleromorphap+Spongillidap+Democlaviap. In contrast to hypotheses based on mitochondrial genome and ribosomal data, nuclear housekeeping gene data suggested that freshwater sponges (Spongillidap) are sister to Haploscleromorphap rather than part of Democlaviap. Within Keratosap, we found equivocal results as to the monophyly of Dictyoceratida. Within Myxospongiaep, Chondrosida and Verongida were monophyletic. A well-supported clade within Democlaviap, Tetractinellidap, composed of all sampled members of Astrophorina and Spirophorina (including the only lithistid in our analysis), was consistently revealed as the sister group to all other members of Democlaviap. Within Tetractinellidap, we did not recover monophyletic Astrophorina or Spirophorina. Our results also reaffirmed the monophyly of order Poecilosclerida (excluding Desmacellidae and Raspailiidae), and polyphyly of Hadromerida and Halichondrida. Conclusions/Significance: These results, using an independent nuclear gene set, confirmed many hypotheses based on ribosomal and/or mitochondrial genes, and they also identified clades with low statistical support or clades that conflicted with traditional morphological classification. Our results will serve as a basis for future exploration of these outstanding questions using more taxon- and gene-rich datasets.
  •  
5.
  • Solomon, Alan, et al. (author)
  • Amyloidogenic potential of foie gras
  • 2007
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 104:26, s. 10998-11001
  • Journal article (peer-reviewed)abstract
    • The human cerebral and systemic amyloidoses and prion-associated spongiform encephalopathies are acquired or inherited protein folding disorders in which normally soluble proteins or peptides are converted into fibrillar aggregates. This is a nucleation-dependent process that can be initiated or accelerated by fibril seeds formed from homologous or heterologous amyloidogenic precursors that serve as an amyloid enhancing factor (AEF) and has pathogenic significance in that disease may be transmitted by oral ingestion or parenteral administration of these conformationally altered components. Except for infected brain tissue, specific dietary sources of AEF have not been identified. Here we report that commercially available duck- or goose-derived foie gras contains birefringent congophilic fibrillar material composed of serum amyloid A-related protein that acted as a potent AEF in a transgenic murine model of secondary (amyloid A protein) amyloidosis. When such mice were injected with or fed amyloid extracted from foie gras, the animals developed extensive systemic pathological deposits. These experimental data provide evidence that an amyloid-containing food product hastened the development of amyloid protein A amyloidosis in a susceptible population. On this basis, we posit that this and perhaps other forms of amyloidosis may be transmissible, akin to the infectious nature of prion-related illnesses.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view