SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Richter Anette) "

Search: WFRF:(Richter Anette)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Begue, Celine, et al. (author)
  • Mid-regional proatrial natriuretic peptide for predicting prognosis in hypertrophic cardiomyopathy
  • 2020
  • In: Heart. - : BMJ PUBLISHING GROUP. - 1355-6037 .- 1468-201X. ; 106:3, s. 196-202
  • Journal article (peer-reviewed)abstract
    • Objectives N-terminal probrain natriuretic peptide (NT-proBNP) predicts mortality and the development of heart failure in hypertrophic cardiomyopathy (HCM). Mid-regional proatrial natriuretic peptide (MR-proANP) is a stable by-product of production of atrial natriuretic peptide. We sought to compare the prognostic value of MR-proANP and NT-proBNP in HCM. Methods We prospectively enrolled a cohort of patients with HCM from different European centres and followed them. All patients had clinical, ECG and echocardiographic evaluation and measurement of MR-proANP and NT-proBNP at inclusion. Results Of 357 patients enrolled, the median age was 52 (IQR: 36-65) years. MR-proANP and NT-proBNP were both independently associated with age, weight, New York Heart Association (NYHA) class, left ventricular ejection fraction (LVEF), wall thickness and left atrial dimension. During a median follow-up of 23 months, 32 patients had a primary end point defined as death (n=6), heart transplantation (n=8), left ventricular assist device implantation (n=1) or heart failure hospitalisation (n=17). Both NT-proBNP and MR-proANP (p<10(-4)) were strongly associated with the primary endpoint, and the areas under the receiver operating characteristic (ROC) curves for both peptides were not significantly different. However, in a multiple stepwise regression analysis, the best model for predicting outcome was NYHA 1-2 vs 3-4 (HR=0.35, 95% CI 0.16 to 0.77, p<0.01), LVEF (HR=0.96, 95% CI 0.94 to 0.98, p=0.0005) and MR-proANP (HR=3.77, 95% CI 2.01 to 7.08, p<0.0001). Conclusions MR-proANP emerges as a valuable biomarker for the prediction of death and heart failure related events in patients with HCM.
  •  
2.
  • Choong, Ferdinand X., et al. (author)
  • Stereochemical Identification of Glucans by a Donor-Acceptor-Donor Conjugated Pentamer Enables Multi-Carbohydrate Anatomical Mapping in Plant Tissues
  • 2019
  • In: Cellulose. - : Springer Netherlands. - 0969-0239 .- 1572-882X. ; 26:7, s. 4253-4264
  • Journal article (peer-reviewed)abstract
    • Optotracing is a novel method for analytical imaging of carbohydrates in plant and microbial tissues. This optical method applies structure-responsive oligothiophenes as molecular fluorophores emitting unique optical signatures when bound to polysaccharides. Herein, we apply Carbotrace680, a short length anionic oligothiophene with a central heterocyclic benzodithiazole (BTD) motif, to probe for different glucans. The donor-acceptor-donor type electronic structure of Carbotrace680 provides improved spectral properties compared to oligothiophenes due to the possibility of intramolecular charge-transfer transition to the BTD motif. This enables differentiation of glucans based on the glycosidic linkage stereochemistry. Thus -configured starch is readily differentiated from -configured cellulose. The versatility of optotracing is demonstrated by dynamic monitoring of thermo-induced starch remodelling, shown in parallel by spectrophotometry and microscopy of starch granules. Imaging of Carbotrace680 bound to multiple glucans in plant tissues provided direct identification of their physical locations, revealing the spatial relationship between structural (cellulose) and storage (starch) glucans at sub-cellular scale. Our work forms the basis for the development of superior optotracers for sensitive detection of polysaccharides. Our non-destructive method for anatomical mapping of glucans in biomass will serve as an enabling technology for developments towards efficient use of plant-derived materials and biomass.
  •  
3.
  • Choong, Ferdinand X., et al. (author)
  • Stereochemical identification of glucans by oligothiophenes enables cellulose anatomical mapping in plant tissues
  • 2018
  • In: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 8
  • Journal article (peer-reviewed)abstract
    • Efficient use of plant-derived materials requires enabling technologies for non-disruptive composition analysis. The ability to identify and spatially locate polysaccharides in native plant tissues is difficult but essential. Here, we develop an optical method for cellulose identification using the structure-responsive, heptameric oligothiophene h-FTAA as molecular fluorophore. Spectrophotometric analysis of h-FTAA interacting with closely related glucans revealed an exceptional specificity for beta-linked glucans. This optical, non-disruptive method for stereochemical differentiation of glycosidic linkages was next used for in situ composition analysis in plants. Multi-laser/multi-detector analysis developed herein revealed spatial localization of cellulose and structural cell wall features such as plasmodesmata and perforated sieve plates of the phloem. Simultaneous imaging of intrinsically fluorescent components revealed the spatial relationship between cell walls and other organelles, such as chloroplasts and lignified annular thickenings of the trachea, with precision at the sub-cellular scale. Our non-destructive method for cellulose identification lays the foundation for the emergence of anatomical maps of the chemical constituents in plant tissues. This rapid and versatile method will likely benefit the plant science research fields and may serve the biorefinery industry as reporter for feedstock optimization as well as in-line monitoring of cellulose reactions during standard operations.
  •  
4.
  • Steiner, Svava E., et al. (author)
  • UPEC kidney infection triggers neuro-immune communication leading to modulation of local renal inflammation by splenic IFNγ
  • 2021
  • In: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 17:5
  • Journal article (peer-reviewed)abstract
    • Bacterial infection results in a veritable cascade of host responses, both local and systemic. To study the initial stages of host-pathogen interaction in living tissue we use spatially-temporally controlled in vivo models. Using this approach, we show here that within 4 h of a uropathogenic Escherichia coli (UPEC) infection in the kidney, an IFNγ response is triggered in the spleen. This rapid infection-mediated inter-organ communication was found to be transmitted via nerve signalling. Bacterial expression of the toxin α-hemolysin directly and indirectly activated sensory neurons, which were identified in the basement membrane of renal tubules. Nerve activation was transmitted via the splenic nerve, inducing upregulation of IFNγ in the marginal zones of the spleen that led to increasing concentrations of IFNγ in the circulation. We found that IFNγ modulated the inflammatory signalling generated by renal epithelia cells in response to UPEC infection. This demonstrates a new concept in the host response to kidney infection; the role of nerves in sensing infection and rapidly triggering a systemic response which can modulate inflammation at the site of infection. The interplay between the nervous and immune systems is an exciting, developing field with the appealing prospect of non-pharmaceutical interventions. Our study identifies an important role for systemic neuro-immune communication in modulating inflammation during the very first hours of a local bacterial infection in vivo.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view