SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Rigby Matthew) "

Search: WFRF:(Rigby Matthew)

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Berg, Danielle A., et al. (author)
  • The COS Legacy Archive Spectroscopy Survey (CLASSY) Treasury Atlas
  • 2022
  • In: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 261:2
  • Journal article (peer-reviewed)abstract
    • Far-ultraviolet (FUV; ∼1200–2000 Å) spectra are fundamental to our understanding of star-forming galaxies, providing a unique window on massive stellar populations, chemical evolution, feedback processes, and reionization. The launch of the James Webb Space Telescope will soon usher in a new era, pushing the UV spectroscopic frontier to higher redshifts than ever before; however, its success hinges on a comprehensive understanding of the massive star populations and gas conditions that power the observed UV spectral features. This requires a level of detail that is only possible with a combination of ample wavelength coverage, signal-to-noise, spectral-resolution, and sample diversity that has not yet been achieved by any FUV spectral database. We present the Cosmic Origins Spectrograph Legacy Spectroscopic Survey (CLASSY) treasury and its first high-level science product, the CLASSY atlas. CLASSY builds on the Hubble Space Telescope (HST) archive to construct the first high-quality (S/N1500 Å ≳ 5/resel), high-resolution (R ∼ 15,000) FUV spectral database of 45 nearby (0.002 < z < 0.182) star-forming galaxies. The CLASSY atlas, available to the public via the CLASSY website, is the result of optimally extracting and coadding 170 archival+new spectra from 312 orbits of HST observations. The CLASSY sample covers a broad range of properties including stellar mass (6.2 < log M⋆(M⊙) < 10.1), star formation rate (−2.0 < log SFR (M⊙ yr−1) < +1.6), direct gas-phase metallicity (7.0 < 12+log(O/H) < 8.8), ionization (0.5 < O32 < 38.0), reddening (0.02 < E(B − V) < 0.67), and nebular density (10 < ne (cm−3) < 1120). CLASSY is biased to UV-bright star-forming galaxies, resulting in a sample that is consistent with the z ∼ 0 mass–metallicity relationship, but is offset to higher star formation rates by roughly 2 dex, similar to z ≳ 2 galaxies. This unique set of properties makes the CLASSY atlas the benchmark training set for star-forming galaxies across cosmic time.
  •  
2.
  • James, Bethan L., et al. (author)
  • CLASSY. II. A Technical Overview of the COS Legacy Archive Spectroscopic Survey
  • 2022
  • In: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 262:2
  • Journal article (peer-reviewed)abstract
    • The COS Legacy Archive Spectroscopic SurveY (CLASSY) is designed to provide the community with a spectral atlas of 45 nearby star-forming galaxies that were chosen to cover similar properties to those seen at high z (z > 6). The prime high-level science product of CLASSY is accurately coadded UV spectra, ranging from ∼1000 to 2000 Å, derived from a combination of archival and new data obtained with HST's Cosmic Origins Spectrograph (COS). This paper details the multistage technical processes of creating this prime data product and the methodologies involved in extracting, reducing, aligning, and coadding far-ultraviolet and near-ultraviolet (NUV) spectra. We provide guidelines on how to successfully utilize COS observations of extended sources, despite COS being optimized for point sources, and best-practice recommendations for the coaddition of UV spectra in general. Moreover, we discuss the effects of our reduction and coaddition techniques in the scientific application of the CLASSY data. In particular, we find that accurately accounting for flux calibration offsets can affect the derived properties of the stellar populations, while customized extractions of NUV spectra for extended sources are essential for correctly diagnosing the metallicity of galaxies via C iii] nebular emission. Despite changes in spectral resolution of up to ∼25% between individual data sets (due to changes in the COS line-spread function), no adverse affects were observed on the difference in velocity width and outflow velocities of isolated absorption lines when measured in the final combined data products, owing in part to our signal-to-noise regime of S/N < 20.
  •  
3.
  • Hsiao, Tiger Yu-Yang, et al. (author)
  • JWST Reveals a Possible z similar to 11 Galaxy Merger in Triply Lensed MACS0647-JD
  • 2023
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 949:2
  • Journal article (peer-reviewed)abstract
    • MACS0647-JD is a triply lensed z similar to 11 galaxy originally discovered with the Hubble Space Telescope. The three lensed images are magnified by factors of similar to 8, 5, and 2 to AB mag 25.1, 25.6, and 26.6 at 3.5 mu m. The brightest is over a magnitude brighter than other galaxies recently discovered at similar redshifts z > 10 with JWST. Here, we report new JWST imaging that clearly resolves MACS0647-JD as having two components that are either merging galaxies or stellar complexes within a single galaxy. The brighter larger component "A" is intrinsically very blue (ss similar to-2.6 +/- 0.1), likely due to very recent star formation and no dust, and is spatially extended with an effective radius similar to 70 +/- 24 pc. The smaller component "B" (r similar to 20-+ 58 pc) appears redder (ss similar to-2 +/- 0.2), likely because it is older (100-200 Myr) with mild dust extinction (AV similar to 0.1 mag). With an estimated stellar mass ratio of roughly 2:1 and physical projected separation similar to 400 pc, we may be witnessing a galaxy merger 430 million years after the Big Bang. We identify galaxies with similar colors in a high-redshift simulation, finding their star formation histories to be dissimilar, which is also suggested by the spectral energy distribution fitting, suggesting they formed further apart. We also identify a candidate companion galaxy "C" similar to 3 kpc away, likely destined to merge with A and B. Upcoming JWST Near Infrared Spectrograph observations planned for 2023 January will deliver spectroscopic redshifts and more physical properties for these tiny magnified distant galaxies observed in the early universe.
  •  
4.
  • Kim, Keunho J., et al. (author)
  • Small Region, Big Impact : Highly Anisotropic Lyman-continuum Escape from a Compact Starburst Region with Extreme Physical Properties
  • 2023
  • In: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 955:1
  • Journal article (peer-reviewed)abstract
    • Extreme, young stellar populations are considered to be the primary contributor to cosmic reionization. How the Lyman continuum (LyC) escapes these galaxies remains highly elusive, and it is challenging to observe this process in actual LyC emitters without resolving the relevant physical scales. We investigate the Sunburst Arc, a strongly lensed LyC emitter at z = 2.37 that reveals an exceptionally small-scale (tens of parsecs) region of high LyC escape. The small (<100 pc) LyC-leaking region has extreme properties: a very blue UV slope (β = −2.9 ± 0.1), a high ionization state ([O iii] λ5007/[O ii] λ3727 = 11 ± 3 and [O iii] λ5007/Hβ = 6.8 ± 0.4), strong oxygen emission (EW([O iii]) = 1095 ± 40 Å), and a high Lyα escape fraction (0.3 ± 0.03), none of which are found in nonleaking regions of the galaxy. The leaking region's UV slope is consistent with approximately "pure" stellar light that is minimally contaminated by the surrounding nebular continuum emission or extinguished by dust. These results suggest a highly anisotropic LyC escape process such that LyC is produced and escapes from a small, extreme starburst region where the stellar feedback from an ionizing star cluster creates one or more "pencil-beam" channels in the surrounding gas through which LyC can directly escape. Such anisotropic escape processes imply that random sight-line effects drive the significant scatters between measurements of galaxy properties and LyC escape fraction, and that strong lensing is a critical tool for resolving the processes that regulate the ionizing budget of galaxies for reionization.
  •  
5.
  • Mainali, Ramesh, et al. (author)
  • The Connection Between Galactic Outflows and the Escape of Ionizing Photons
  • 2022
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 940:2
  • Journal article (peer-reviewed)abstract
    • We analyze spectra of a gravitationally lensed galaxy, known as the Sunburst Arc, that is leaking ionizing photons, also known as the Lyman continuum (LyC). Magnification from gravitational lensing permits the galaxy to be spatially resolved into one region that leaks ionizing photons and several that do not. Rest-frame UV and optical spectra from Magellan target 10 different regions along the lensed Arc, including six multiple images of the LyC leaking region and four regions that do not show LyC emission. The rest-frame optical spectra of the ionizing photon emitting regions reveal a blueshifted (ΔV = 27 km s−1) broad emission component (FWHM = 327 km s−1), comprising 55% of the total [O iii] line flux, in addition to a narrow component (FWHM = 112 km s−1), suggesting the presence of strong highly ionized gas outflows. This is consistent with the high-velocity ionized outflow inferred from the rest-frame UV spectra. In contrast, the broad emission component is less prominent in the nonleaking regions, comprising ∼26% of total [O iii] line flux. The high-ionization absorption lines are prominent in both the leaker and the nonleaker, but the low-ionization absorption lines are very weak in the leaker, suggesting that the line-of-sight gas is highly ionized in the leaker. Analyses of stellar wind features reveal that the stellar population of the LyC leaking regions is considerably younger (∼3 Myr) than that of the nonleaking regions (∼12 Myr), emphasizing that stellar feedback from young stars may play an important role in ionizing photon escape.
  •  
6.
  • Mingozzi, Matilde, et al. (author)
  • CLASSY. VIII. Exploring the Source of Ionization with UV Interstellar Medium Diagnostics in Local High-z Analogs
  • 2024
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 962:1
  • Journal article (peer-reviewed)abstract
    • In the current JWST era, rest-frame UV spectra play a crucial role in enhancing our understanding of the interstellar medium (ISM) and stellar properties of the first galaxies in the epoch of reionization (z > 6). Here, we compare well-known and reliable optical diagrams sensitive to the main ionization source (i.e., star formation, SF; active galactic nuclei, AGN; and shocks) to UV counterparts proposed in the literature—the so-called "UV–BPT diagrams"—using the HST COS Legacy Archive Spectroscopic SurveY (CLASSY), which is the largest high-quality, high-resolution, and broad-wavelength range atlas of far-UV spectra for 45 local star-forming galaxies. In particular, we explore where CLASSY UV line ratios are located in the different UV diagnostic plots, taking into account state-of-the-art photoionization and shock models, and, for the first time, the measured ISM and stellar properties (e.g., gas-phase metallicity, ionization parameter, carbon abundance, and stellar age). We find that the combination of C iii] λλ1907,9 He iiλ1640 and O iii] λ1666 can be a powerful tool to separate between SF, shocks, and AGN at subsolar metallicities. We also confirm that alternative diagrams without O iii] λ1666 still allow us to define an SF-locus, with some caveats. Diagrams including C ivλλ1548,51 should be taken with caution given the complexity of this doublet profile. Finally, we present a discussion detailing the ISM conditions required to detect UV emission lines, visible only in low gas-phase metallicity (12 + log(O/H) ≲ 8.3) and high ionization parameter (log(U) ≳ −2.5) environments. Overall, CLASSY and our UV toolkit will be crucial in interpreting the spectra of the earliest galaxies that JWST is currently revealing.
  •  
7.
  • Monteil, Guillaume, et al. (author)
  • The regional European atmospheric transport inversion comparison, EUROCOM : First results on European-wide terrestrial carbon fluxes for the period 2006-2015
  • 2020
  • In: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 20:20, s. 12063-12091
  • Journal article (peer-reviewed)abstract
    • Atmospheric inversions have been used for the past two decades to derive large-scale constraints on the sources and sinks of CO2 into the atmosphere. The development of dense in situ surface observation networks, such as ICOS in Europe, enables in theory inversions at a resolution close to the country scale in Europe. This has led to the development of many regional inversion systems capable of assimilating these high-resolution data, in Europe and elsewhere. The EUROCOM (European atmospheric transport inversion comparison) project is a collaboration between seven European research institutes, which aims at producing a collective assessment of the net carbon flux between the terrestrial ecosystems and the atmosphere in Europe for the period 2006 2015. It aims in particular at investigating the capacity of the inversions to deliver consistent flux estimates from the country scale up to the continental scale. The project participants were provided with a common database of in situ-observed CO2 concentrations (including the observation sites that are now part of the ICOS network) and were tasked with providing their best estimate of the net terrestrial carbon flux for that period, and for a large domain covering the entire European Union. The inversion systems differ by the transport model, the inversion approach, and the choice of observation and prior constraints, enabling us to widely explore the space of uncertainties. This paper describes the intercomparison protocol and the participating systems, and it presents the first results from a reference set of inversions, at the continental scale and in four large regions. At the continental scale, the regional inversions support the assumption that European ecosystems are a relatively small sink (-0:21 ± 0:2 Pg C yr-1). We find that the convergence of the regional inversions at this scale is not better than that obtained in state-of-the-art global inversions. However, more robust results are obtained for subregions within Europe, and in these areas with dense observational coverage, the objective of delivering robust countryscale flux estimates appears achievable in the near future.
  •  
8.
  • Nickless, Alecia, et al. (author)
  • Greenhouse gas observation network design for Africa
  • 2020
  • In: Tellus. Series B: Chemical and Physical Meteorology. - : Stockholm University Press. - 1600-0889 .- 0280-6509. ; 72:1, s. 1-30
  • Journal article (peer-reviewed)abstract
    • An optimal network design was carried out to prioritise the installation or refurbishment of greenhouse gas (GHG) monitoring stations around Africa. The network was optimised to reduce the uncertainty in emissions across three of the most important GHGs: CO2, CH4, and N2O. Optimal networks were derived using incremental optimisation of the percentage uncertainty reduction achieved by a Gaussian Bayesian atmospheric inversion. The solution for CO2 was driven by seasonality in net primary productivity. The solution for N2O was driven by activity in a small number of soil flux hotspots. The optimal solution for CH4 was consistent over different seasons. All solutions for CO2 and N2O placed sites in central Africa at places such as Kisangani, Kinshasa and Bunia (Democratic Republic of Congo), Dundo and Lubango (Angola), Zoétélé (Cameroon), Am Timan (Chad), and En Nahud (Sudan). Many of these sites appeared in the CH4 solutions, but with a few sites in southern Africa as well, such as Amersfoort (South Africa). The multi-species optimal network design solutions tended to have sites more evenly spread-out, but concentrated the placement of new tall-tower stations in Africa between 10ºN and 25ºS. The uncertainty reduction achieved by the multi-species network of twelve stations reached 47.8% for CO2, 34.3% for CH4, and 32.5% for N2O. The gains in uncertainty reduction diminished as stations were added to the solution, with an expected maximum of less than 60%. A reduction in the absolute uncertainty in African GHG emissions requires these additional measurement stations, as well as additional constraint from an integrated GHG observatory and a reduction in uncertainty in the prior biogenic fluxes in tropical Africa.
  •  
9.
  • Sharon, Keren, et al. (author)
  • The Cosmic Telescope That Lenses the Sunburst Arc, PSZ1 G311.65-18.48 : Strong Gravitational Lensing Model and Source Plane Analysis
  • 2022
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 941:2
  • Journal article (peer-reviewed)abstract
    • We present a strong-lensing analysis of the cluster PSZ1 G311.65−18.48, based on Hubble Space Telescope imaging, archival VLT/MUSE spectroscopy, and Chandra X-ray data. This cool-core cluster (z = 0.443) lenses the brightest lensed galaxy known, dubbed the "Sunburst Arc" (z = 2.3703), a Lyman continuum (LyC) emitting galaxy multiply imaged 12 times. We identify in this field 14 additional strongly lensed galaxies to constrain a strong-lens model and report secure spectroscopic redshifts of four of them. We measure a projected cluster core mass of M(<250 kpc) = M⊙. The two least magnified but complete images of the Sunburst Arc's source galaxy are magnified by ∼13×, while the LyC clump is magnified by ∼4–80×. We present time delay predictions and conclusive evidence that a discrepant clump in the Sunburst Arc, previously claimed to be a transient, is not variable, thus strengthening the hypothesis that it results from an exceptionally high magnification. A source plane reconstruction and analysis of the Sunburst Arc finds its physical size to be 1 × 2 kpc and that it is resolved in three distinct directions in the source plane, 0°, 40°, and 75° (east of north). We place an upper limit of r ≲ 50 pc on the source plane size of unresolved clumps and r ≲ 32 pc for the LyC clump. Finally, we report that the Sunburst Arc is likely in a system of two or more galaxies separated by ≲6 kpc in projection. Their interaction may drive star formation and could play a role in the mechanism responsible for the leaking LyC radiation.
  •  
10.
  • Welch, Brian, et al. (author)
  • JWST Imaging of Earendel, the Extremely Magnified Star at Redshift z=6.2
  • 2022
  • In: Astrophysical Journal Letters. - : Institute of Physics (IOP). - 2041-8205 .- 2041-8213. ; 940
  • Journal article (peer-reviewed)abstract
    • The gravitationally lensed star WHL 0137-LS, nicknamed Earendel, was identified with a photometric redshift z (phot) = 6.2 +/- 0.1 based on images taken with the Hubble Space Telescope. Here we present James Webb Space Telescope (JWST) Near Infrared Camera images of Earendel in eight filters spanning 0.8-5.0 mu m. In these higher-resolution images, Earendel remains a single unresolved point source on the lensing critical curve, increasing the lower limit on the lensing magnification to mu > 4000 and restricting the source plane radius further to r < 0.02 pc, or similar to 4000 au. These new observations strengthen the conclusion that Earendel is best explained by an individual star or multiple star system and support the previous photometric redshift estimate. Fitting grids of stellar spectra to our photometry yields a stellar temperature of T (eff) similar to 13,000-16,000 K, assuming the light is dominated by a single star. The delensed bolometric luminosity in this case ranges from log(L)=5.8 L-theta, which is in the range where one expects luminous blue variable stars. Follow-up observations, including JWST NIRSpec scheduled for late 2022, are needed to further unravel the nature of this object, which presents a unique opportunity to study massive stars in the first billion years of the universe.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view