SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rintoul L) "

Sökning: WFRF:(Rintoul L)

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Hyde, Kevin D., et al. (författare)
  • One stop shop: backbones trees for important phytopathogenic genera: I (2014)
  • 2014
  • Ingår i: Fungal diversity. - : Springer Science and Business Media LLC. - 1560-2745 .- 1878-9129. ; 67:1, s. 21-125
  • Tidskriftsartikel (refereegranskat)abstract
    • Many fungi are pathogenic on plants and cause significant damage in agriculture and forestry. They are also part of the natural ecosystem and may play a role in regulating plant numbers/density. Morphological identification and analysis of plant pathogenic fungi, while important, is often hampered by the scarcity of discriminatory taxonomic characters and the endophytic or inconspicuous nature of these fungi. Molecular (DNA sequence) data for plant pathogenic fungi have emerged as key information for diagnostic and classification studies, although hampered in part by non-standard laboratory practices and analytical methods. To facilitate current and future research, this study provides phylogenetic synopses for 25 groups of plant pathogenic fungi in the Ascomycota, Basidiomycota, Mucormycotina (Fungi), and Oomycota, using recent molecular data, up-to-date names, and the latest taxonomic insights. Lineage-specific laboratory protocols together with advice on their application, as well as general observations, are also provided. We hope to maintain updated backbone trees of these fungal lineages over time and to publish them jointly as new data emerge. Researchers of plant pathogenic fungi not covered by the present study are invited to join this future effort. Bipolaris, Botryosphaeriaceae, Botryosphaeria, Botrytis, Choanephora, Colletotrichum, Curvularia, Diaporthe, Diplodia, Dothiorella, Fusarium, Gilbertella, Lasiodiplodia, Mucor, Neofusicoccum, Pestalotiopsis, Phyllosticta, Phytophthora, Puccinia, Pyrenophora, Pythium, Rhizopus, Stagonosporopsis, Ustilago and Verticillium are dealt with in this paper.
  •  
3.
  • Schoch, CL, et al. (författare)
  • Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi
  • 2012
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 109:16, s. 6241-6246
  • Tidskriftsartikel (refereegranskat)abstract
    • Six DNA regions were evaluated as potential DNA barcodes for Fungi, the second largest kingdom of eukaryotic life, by a multinational, multilaboratory consortium. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it is difficult to amplify in fungi, often includes large introns, and can be insufficiently variable. Three subunits from the nuclear ribosomal RNA cistron were compared together with regions of three representative protein-coding genes (largest subunit of RNA polymerase II, second largest subunit of RNA polymerase II, and minichromosome maintenance protein). Although the protein-coding gene regions often had a higher percent of correct identification compared with ribosomal markers, low PCR amplification and sequencing success eliminated them as candidates for a universal fungal barcode. Among the regions of the ribosomal cistron, the internal transcribed spacer (ITS) region has the highest probability of successful identification for the broadest range of fungi, with the most clearly defined barcode gap between inter- and intraspecific variation. The nuclear ribosomal large subunit, a popular phylogenetic marker in certain groups, had superior species resolution in some taxonomic groups, such as the early diverging lineages and the ascomycete yeasts, but was otherwise slightly inferior to the ITS. The nuclear ribosomal small subunit has poor species-level resolution in fungi. ITS will be formally proposed for adoption as the primary fungal barcode marker to the Consortium for the Barcode of Life, with the possibility that supplementary barcodes may be developed for particular narrowly circumscribed taxonomic groups.
  •  
4.
  • Silvano, Alessandro, et al. (författare)
  • Observing Antarctic Bottom Water in the Southern Ocean
  • 2023
  • Ingår i: Frontiers in Marine Science. - 2296-7745. ; 10
  • Forskningsöversikt (refereegranskat)abstract
    • Dense, cold waters formed on Antarctic continental shelves descend along the Antarctic continental margin, where they mix with other Southern Ocean waters to form Antarctic Bottom Water (AABW). AABW then spreads into the deepest parts of all major ocean basins, isolating heat and carbon from the atmosphere for centuries. Despite AABW's key role in regulating Earth's climate on long time scales and in recording Southern Ocean conditions, AABW remains poorly observed. This lack of observational data is mostly due to two factors. First, AABW originates on the Antarctic continental shelf and slope where in situ measurements are limited and ocean observations by satellites are hampered by persistent sea ice cover and long periods of darkness in winter. Second, north of the Antarctic continental slope, AABW is found below approximately 2 km depth, where in situ observations are also scarce and satellites cannot provide direct measurements. Here, we review progress made during the past decades in observing AABW. We describe 1) long-term monitoring obtained by moorings, by ship-based surveys, and beneath ice shelves through bore holes; 2) the recent development of autonomous observing tools in coastal Antarctic and deep ocean systems; and 3) alternative approaches including data assimilation models and satellite-derived proxies. The variety of approaches is beginning to transform our understanding of AABW, including its formation processes, temporal variability, and contribution to the lower limb of the global ocean meridional overturning circulation. In particular, these observations highlight the key role played by winds, sea ice, and the Antarctic Ice Sheet in AABW-related processes. We conclude by discussing future avenues for observing and understanding AABW, impressing the need for a sustained and coordinated observing system.
  •  
5.
  • Horváth, E., et al. (författare)
  • Investigation of mandelic acid bonding on Pirkle type chromatographic stationary phases by Raman spectroscopy
  • 2000
  • Ingår i: Journal of Chromatography A. - 0021-9673 .- 1873-3778. ; 893:1, s. 37-46
  • Tidskriftsartikel (refereegranskat)abstract
    • The bonding of mandelic acid enantiomers has been studied on benzene-leucine, dinitrobenzene-leucine and dinitrobenzene-phenylalanine type chiral stationary phases connected to zeolite A supports. The π-donor, π-acceptor and H-bonding interactions responsible for diastereomer pair formations can be studied under quasi in situ chromatographic conditions by Fourier transform Raman and surface enhanced Raman spectroscopic techniques. Structural differences between diastereomer pairs result in observable spectral differences at a phase load of approx. 50%. It was shown that the decreasing π-acceptor character of the phase is associated with its increasing capability of H-bond formation. Correlating spectral data to chromatographic results it can be concluded that, in addition to H-bonding as well as to π-donor-π-acceptor interactions, steric hindrances due to bulky moieties of either the stationary phase or the analyte molecules are of importance in successful separations.
  •  
6.
  • Kennicutt, M. C., et al. (författare)
  • Delivering 21st century Antarctic and Southern Ocean science
  • 2016
  • Ingår i: Antarctic Science. - 0954-1020 .- 1365-2079. ; 28, s. 407-423
  • Tidskriftsartikel (refereegranskat)abstract
    • © Antarctic Science Ltd 2016.The Antarctic Roadmap Challenges (ARC) project identified critical requirements to deliver high priority Antarctic research in the 21st century. The ARC project addressed the challenges of enabling technologies, facilitating access, providing logistics and infrastructure, and capitalizing on international co-operation. Technological requirements include: i) innovative automated in situ observing systems, sensors and interoperable platforms (including power demands), ii) realistic and holistic numerical models, iii) enhanced remote sensing and sensors, iv) expanded sample collection and retrieval technologies, and v) greater cyber-infrastructure to process 'big data' collection, transmission and analyses while promoting data accessibility. These technologies must be widely available, performance and reliability must be improved and technologies used elsewhere must be applied to the Antarctic. Considerable Antarctic research is field-based, making access to vital geographical targets essential. Future research will require continent- and ocean-wide environmentally responsible access to coastal and interior Antarctica and the Southern Ocean. Year-round access is indispensable. The cost of future Antarctic science is great but there are opportunities for all to participate commensurate with national resources, expertise and interests. The scope of future Antarctic research will necessitate enhanced and inventive interdisciplinary and international collaborations. The full promise of Antarctic science will only be realized if nations act together.
  •  
7.
  • McMahon, C. R., et al. (författare)
  • Animal Borne Ocean Sensors - AniBOS - An Essential Component of the Global Ocean Observing System
  • 2021
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 8
  • Forskningsöversikt (refereegranskat)abstract
    • Marine animals equipped with biological and physical electronic sensors have produced long-term data streams on key marine environmental variables, hydrography, animal behavior and ecology. These data are an essential component of the Global Ocean Observing System (GOOS). The Animal Borne Ocean Sensors (AniBOS) network aims to coordinate the long-term collection and delivery of marine data streams, providing a complementary capability to other GOOS networks that monitor Essential Ocean Variables (EOVs), essential climate variables (ECVs) and essential biodiversity variables (EBVs). AniBOS augments observations of temperature and salinity within the upper ocean, in areas that are under-sampled, providing information that is urgently needed for an improved understanding of climate and ocean variability and for forecasting. Additionally, measurements of chlorophyll fluorescence and dissolved oxygen concentrations are emerging. The observations AniBOS provides are used widely across the research, modeling and operational oceanographic communities. High latitude, shallow coastal shelves and tropical seas have historically been sampled poorly with traditional observing platforms for many reasons including sea ice presence, limited satellite coverage and logistical costs. Animal-borne sensors are helping to fill that gap by collecting and transmitting in near real time an average of 500 temperature-salinity-depth profiles per animal annually and, when instruments are recovered (similar to 30% of instruments deployed annually, n = 103 +/- 34), up to 1,000 profiles per month in these regions. Increased observations from under-sampled regions greatly improve the accuracy and confidence in estimates of ocean state and improve studies of climate variability by delivering data that refine climate prediction estimates at regional and global scales. The GOOS Observations Coordination Group (OCG) reviews, advises on and coordinates activities across the global ocean observing networks to strengthen the effective implementation of the system. AniBOS was formally recognized in 2020 as a GOOS network. This improves our ability to observe the ocean's structure and animals that live in them more comprehensively, concomitantly improving our understanding of global ocean and climate processes for societal benefit consistent with the UN Sustainability Goals 13 and 14: Climate and Life below Water. Working within the GOOS OCG framework ensures that AniBOS is an essential component of an integrated Global Ocean Observing System.
  •  
8.
  • Boyd, P. W., et al. (författare)
  • Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change-A review
  • 2018
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013. ; 24:6, s. 2239-2261
  • Tidskriftsartikel (refereegranskat)abstract
    • Marine life is controlled by multiple physical and chemical drivers and by diverse ecological processes. Many of these oceanic properties are being altered by climate change and other anthropogenic pressures. Hence, identifying the influences of multifaceted ocean change, from local to global scales, is a complex task. To guide policy-making and make projections of the future of the marine biosphere, it is essential to understand biological responses at physiological, evolutionary and ecological levels. Here, we contrast and compare different approaches to multiple driver experiments that aim to elucidate biological responses to a complex matrix of ocean global change. We present the benefits and the challenges of each approach with a focus on marine research, and guidelines to navigate through these different categories to help identify strategies that might best address research questions in fundamental physiology, experimental evolutionary biology and community ecology. Our review reveals that the field of multiple driver research is being pulled in complementary directions: the need for reductionist approaches to obtain processoriented, mechanistic understanding and a requirement to quantify responses to projected future scenarios of ocean change. We conclude the review with recommendations on how best to align different experimental approaches to contribute fundamental information needed for science-based policy formulation.
  •  
9.
  • Engish, L, et al. (författare)
  • Application of Raman spectroscopy and infrared synchrotron radiation for digital print analysis
  • 2008
  • Ingår i: Proceedings of Non-Impact Printing. - : The Society for Imaging Science and Technology. - 9780892082797 ; , s. 449-449
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The chemical properties of ink, substrate and the interface between them influence the printing process and the achievable print quality. Several methods to characterize these properties have been developed and used in recent years. The usage of vibrational spectroscopy methods are opening a new way to characterize printouts at the molecular level. The Raman spectroscopy, mainly working with visible light and a low level of sample preparation, has a high potential in this field. In the present work, the use of micro-Raman spectroscopy and synchrotron radiation-based infrared (SR-FTIR) spectro-microscopy offers a powerful, non-destructive method for the study and the identification of inks on paper and the comparison of them to one another without the need for chemical preparation and related laboratory work. Using the proper measurement parameters, the 3-D distribution of ink in paper was studied and related to the spreading and penetration of single inkjet droplets. This research was undertaken at the IR beamline at the Australian Synchrotron, Victoria Australia.  
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20
Typ av publikation
tidskriftsartikel (17)
forskningsöversikt (2)
konferensbidrag (1)
Typ av innehåll
refereegranskat (19)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Nilsson, R. Henrik, ... (2)
Yang, H. (1)
Sato, K. (1)
Wang, Y. (1)
Barreira, Sandra (1)
Clem, Kyle R. (1)
visa fler...
Colwell, Steve (1)
De Laat, Jos (1)
Heslop, E (1)
Chen, W. (1)
Tedersoo, L. (1)
Pawlowska, Julia (1)
Eberhardt, U. (1)
Lee, J. (1)
Suzuki, M. (1)
Tanaka, K. (1)
Xu, J (1)
Collins, S (1)
Abel-Ollo, K. (1)
Hambleton, S (1)
Francis, J (1)
Abrahamsen, E. Povl (1)
Coy, Lawrence (1)
du Plessis, Marcel, ... (1)
Fogt, Ryan L. (1)
Fricker, Helen Amand ... (1)
Gardner, Alex S. (1)
Gille, Sarah T. (1)
Gorte, Tessa (1)
Johnson, Bryan (1)
Keenan, Eric (1)
Keller, Linda M. (1)
Kramarova, Natalya A ... (1)
Lazzara, Matthew A. (1)
Lenaerts, Jan T. M. (1)
Lieser, Jan L. (1)
Liu, Hongxing (1)
Long, Craig S. (1)
Massom, Robert A. (1)
Mikolajczyk, David (1)
Nash, Eric R. (1)
Newman, Paul A. (1)
Petropavlovskikh, Ir ... (1)
Pitts, Michael (1)
Reid, Phillip (1)
Santee, Michelle L. (1)
Scambos, Ted A. (1)
Stammerjohn, Sharon (1)
Strahan, Susan (1)
Wang, Lei (1)
visa färre...
Lärosäte
Göteborgs universitet (11)
Lunds universitet (3)
Naturhistoriska riksmuseet (2)
Luleå tekniska universitet (1)
Stockholms universitet (1)
Mittuniversitetet (1)
visa fler...
Karolinska Institutet (1)
visa färre...
Språk
Engelska (20)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (12)
Medicin och hälsovetenskap (7)
Teknik (1)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy