SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ristow Michael) "

Search: WFRF:(Ristow Michael)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Fex, Malin, et al. (author)
  • Rat insulin promoter 2-Cre recombinase mice bred onto a pure C57BL/6J background exhibit unaltered glucose tolerance
  • 2007
  • In: Journal of Endocrinology. - 1479-6805. ; 194:3, s. 551-555
  • Journal article (peer-reviewed)abstract
    • beta-Cell-specific gene targeting is a widely used tool when studying genes involved in beta-cell function. For this purpose, several conditional beta-cell knockouts have been generated using the rat insulin promoter 2-Cre recombinase (RIP2-Cre) mouse. However, it was recently observed that expression of Cre alone in P-cells may affect whole body glucose homeostasis. Therefore, we investigated glucose homeostasis, insulin secretion, and beta-cell mass in our line of RIP2-Cre mice bred onto the C57BL/6J genetic background. We used 12- and 28-week-old female RIP2-Cre mice for analyses of insulin secretion in vitro, glucose homeostasis in vivo and beta-cell mass. Our mouse line has been backcrossed for 14 generations to yield a near 100% pure C57BL/6J background. We found that fasting plasma glucose and insulin levels were similar in both genotypes. An i.v. glucose tolerance test revealed no differences in glucose clearance and insulin secretion between 12-week-old RIP2-Cre and WT mice. Moreover, insulin secretion hi vitro in islets isolated from 28-week-old RIP2-Cre mice and controls was similar. In addition, beta-cell mass was not different between the two genotypes at 28 weeks of age. In our experiments, we observed no differences in glucose tolerance, insulin secretion in vivo and in vitro, or in beta-cell mass between the genotypes. As our RIP2-Cre mice are on a near 100% pure genetic background (C57BL/6J), we suggest that the perturbations in glucose homeostasis previously reported in RIP2-Cre mouse lines can be accounted for by differences in genetic background.
  •  
2.
  • Ristow, Laura, et al. (author)
  • Integrin binding by Borrelia burgdorferi P66 facilitates dissemination but is not required for infectivity
  • 2015
  • In: Cellular Microbiology. - : Hindawi Limited. - 1462-5814 .- 1462-5822. ; 17:7, s. 1021-1036
  • Journal article (peer-reviewed)abstract
    • P66, a Borrelia burgdorferi surface protein with porin and integrin-binding activities, is essential for murine infection. The role of P66 integrin-binding activity in B. burgdorferi infection was investigated and found to affect transendothelial migration. The role of integrin binding, specifically, was tested by mutation of two amino acids (D205A,D207A) or deletion of seven amino acids (Del202–208). Neither change affected surface localization or channel-forming activity of P66, but both significantly reduced binding to αvβ3. Integrin-binding deficient B. burgdorferi strains caused disseminated infection in mice at 4 weeks post-subcutaneous inoculation, but bacterial burdens were significantly reduced in some tissues. Following intravenous inoculation, the Del202–208 bacteria were below the limit of detection in all tissues assessed at 2 weeks post-inoculation, but bacterial burdens recovered to wild-type levels at 4 weeks post-inoculation. The delay in tissue colonization correlated with reduced migration of the Del202–208 strains across microvascular endothelial cells, similar to Δp66bacteria. These results indicate that integrin binding by P66 is important to efficient dissemination of B. burgdorferi, which is critical to its ability to cause disease manifestations in incidental hosts and to its maintenance in the enzootic cycle.
  •  
3.
  • Ristow, Michael, et al. (author)
  • Frataxin deficiency in pancreatic islets causes diabetes due to loss of β cell mass
  • 2003
  • In: Journal of Clinical Investigation. - 0021-9738. ; 112:4, s. 527-534
  • Journal article (peer-reviewed)abstract
    • Diabetes is caused by an absolute (type 1) or relative (type 2) deficiency of insulin-producing β cells. We have disrupted expression of the mitochondrial protein frataxin selectively in pancreatic β cells. Mice were born healthy but subsequently developed impaired glucose tolerance progressing to overt diabetes mellitus. These observations were explained by impairment of insulin secretion due to a loss of β cell mass in knockout animals. This phenotype was preceded by elevated levels of reactive oxygen species in knockout islets, an increased frequency of apoptosis, and a decreased number of proliferating β cells. Hence, disruption of the frataxin gene in pancreatic β cells causes diabetes following cellular growth arrest and apoptosis, paralleled by an increase in reactive oxygen species in islets. These observations might provide insight into the deterioration of β cell function observed in different subtypes of diabetes in humans.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view