SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Rog Tomasz) "

Search: WFRF:(Rog Tomasz)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Botan, Alexandru, et al. (author)
  • Toward Atomistic Resolution Structure of Phosphatidylcholine Headgroup and Glycerol Backbone at Different Ambient Conditions
  • 2015
  • In: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-6106 .- 1520-5207. ; 119:49, s. 15075-15088
  • Journal article (peer-reviewed)abstract
    • Phospholipids are essential building blocks of biological membranes. Despite a vast amount of very accurate experimental data, the atomistic resolution structures sampled by the glycerol backbone and choline headgroup in phoshatidylcholine bilayers are not known. Atomistic resolution molecular dynamics simulations have the potential to resolve the structures, and to give an arrestingly intuitive interpretation of the experimental data, but only if the simulations reproduce the data within experimental accuracy. In the present work, we simulated phosphatidylcholine (PC) lipid bilayers with 13 different atomistic models, and compared simulations with NMR. experiments in terms of the highly structurally sensitive C-H bond vector order parameters. Focusing on the glycerol backbone and choline headgroups, we showed that the order parameter comparison can be used to judge the atomistic resolution structural accuracy of the models. Accurate models, in turn, allow molecular dynamics simulations to be used as an interpretation tool that translates these NMR data into a dynamic three-dimensional representation of biomolecules in biologically relevant conditions. In addition to lipid bilayers in fully hydrated conditions, we reviewed previous experimental data for dehydrated bilayers and cholesterol-containing bilayers, and interpreted them with simulations. Although none of the existing models reached experimental accuracy, by critically comparing them we were able to distill relevant chemical information: (1) increase of choline order parameters indicates the P-N vector tilting more parallel to the membrane, and (2) cholesterol induces only minor changes to the PC (glycerol backbone) structure. This work has been done as a fully open collaboration, using nmrlipids.blogspot.fi as a communication platform; all the scientific contributions were made publicly on this blog. During the open research process, the repository holding our simulation trajectories and files (https://zenodo.org/collection/user-nmrlipids) has become the most extensive publicly available collection of molecular dynamics simulation trajectories of lipid bilayers.
  •  
2.
  • Pietiläinen, Kirsi H, et al. (author)
  • Association of lipidome remodeling in the adipocyte membrane with acquired obesity in humans
  • 2011
  • In: PLoS biology. - : Public Library of Science. - 1544-9173 .- 1545-7885. ; 9:6
  • Journal article (peer-reviewed)abstract
    • Identification of early mechanisms that may lead from obesity towards complications such as metabolic syndrome is of great interest. Here we performed lipidomic analyses of adipose tissue in twin pairs discordant for obesity but still metabolically compensated. In parallel we studied more evolved states of obesity by investigating a separated set of individuals considered to be morbidly obese. Despite lower dietary polyunsaturated fatty acid intake, the obese twin individuals had increased proportions of palmitoleic and arachidonic acids in their adipose tissue, including increased levels of ethanolamine plasmalogens containing arachidonic acid. Information gathered from these experimental groups was used for molecular dynamics simulations of lipid bilayers combined with dependency network analysis of combined clinical, lipidomics, and gene expression data. The simulations suggested that the observed lipid remodeling maintains the biophysical properties of lipid membranes, at the price, however, of increasing their vulnerability to inflammation. Conversely, in morbidly obese subjects, the proportion of plasmalogens containing arachidonic acid in the adipose tissue was markedly decreased. We also show by in vitro Elovl6 knockdown that the lipid network regulating the observed remodeling may be amenable to genetic modulation. Together, our novel approach suggests a physiological mechanism by which adaptation of adipocyte membranes to adipose tissue expansion associates with positive energy balance, potentially leading to higher vulnerability to inflammation in acquired obesity. Further studies will be needed to determine the cause of this effect.
  •  
3.
  • Róg, Tomasz, et al. (author)
  • Role of cardiolipins in the inner mitochondrial membrane : insight gained through atom-scale simulations
  • 2009
  • In: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-6106 .- 1520-5207. ; 113:11, s. 3413-3422
  • Journal article (peer-reviewed)abstract
    • Mitochondrial membranes are unique in many ways. Unlike other cellular membranes, they are comprised of two membranes instead of just one, and cardiolipins, one of the abundant lipid species in mitochondrial membranes, are not found in significant amounts elsewhere in the cell. Among other aspects, the exceptional nature of cardiolipins is characterized by their small charged head group connected to typically four hydrocarbon chains. In this work, we present atomic-scale molecular dynamics simulations of the inner mitochondrial membrane modeled as a mixture of cardiolipins (CLs), phosphatidylcholines (PCs), and phosphatidylethanolamines (PEs). For comparison, we also consider pure one-component bilayers and mixed PC-PE, PC-CL, and PE-CL membranes. We find that the influence of CLs on membrane properties depends strongly on membrane composition. This is highlighted by studies of the stability of CL-containing membranes, which indicate that the interactions of CL in ternary lipid bilayers cannot be deduced from the corresponding ones in binary membranes. Moreover, while the membrane properties in the hydrocarbon region are only weakly affected by CLs, the changes at the membrane-water interface turn out to be prominent. The effects at the interface are most evident in membrane properties related to hydrogen bonding and the binding phenomena associated with electrostatic interactions.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view