SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Rudelius M) "

Search: WFRF:(Rudelius M)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • den Hollander, J, et al. (author)
  • Aurora kinases A and B are up-regulated by Myc and are essential for maintenance of the malignant state
  • 2010
  • In: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 116:9, s. 1498-1505
  • Journal article (peer-reviewed)abstract
    • Myc oncoproteins promote continuous cell growth, in part by controlling the transcription of key cell cycle regulators. Here, we report that c-Myc regulates the expression of Aurora A and B kinases (Aurka and Aurkb), and that Aurka and Aurkb transcripts and protein levels are highly elevated in Myc-driven B-cell lymphomas in both mice and humans. The induction of Aurka by Myc is transcriptional and is directly mediated via E-boxes, whereas Aurkb is regulated indirectly. Blocking Aurka/b kinase activity with a selective Aurora kinase inhibitor triggers transient mitotic arrest, polyploidization, and apoptosis of Myc-induced lymphomas. These phenotypes are selectively bypassed by a kinase inhibitor-resistant-Aurkb mutant, demonstrating that Aurkb is the primary therapeutic target in the context of Myc. Importantly, apoptosis provoked by Aurk inhibition was p53 independent, suggesting that Aurka/Aurkb inhibitors will show efficacy in treating primary or relapsed malignancies having Myc involvement and/or loss of p53 function. (Blood. 2010;116(9):1498-1505)
  •  
2.
  • Hoellein, Alexander, et al. (author)
  • Myc-induced SUMOylation is a therapeutic vulnerability for B-cell lymphoma.
  • 2014
  • In: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 124:13, s. 2081-90
  • Journal article (peer-reviewed)abstract
    • Myc oncogenic transcription factors (c-Myc, N-Myc, and L-Myc) coordinate the control of cell growth, division, and metabolism. In cancer, Myc overexpression is often associated with aggressive disease, which is in part due to the destruction of select targets by the ubiquitin-proteasome system (eg, SCF(Skp2)-directed destruction of the Cdk inhibitor p27(Kip1)). We reasoned that Myc would also regulate SUMOylation, a related means of posttranslational modification of proteins, and that this circuit would play essential roles in Myc-dependent tumorigenesis. Here, we report marked increases in the expression of genes that encode regulators and components of the SUMOylation machinery in mouse and human Myc-driven lymphomas, resulting in hyper-SUMOylation in these tumors. Further, inhibition of SUMOylation by genetic means disables Myc-induced proliferation, triggering G2/M cell-cycle arrest, polyploidy, and apoptosis. Using genetically defined cell models and conditional expression systems, this response was shown to be Myc specific. Finally, in vivo loss-of-function and pharmacologic studies demonstrated that inhibition of SUMOylation provokes rapid regression of Myc-driven lymphoma. Thus, targeting SUMOylation represents an attractive therapeutic option for lymphomas with MYC involvement.
  •  
3.
  • Höglund, Andreas, 1980-, et al. (author)
  • Therapeutic implications for the induced levels of Chk1 in Myc- expressing cancer cells
  • 2011
  • In: Clinical Cancer Research. - Philadelphia : Association for Cancer Research. - 1078-0432 .- 1557-3265. ; 17:22, s. 7067-7079
  • Journal article (peer-reviewed)abstract
    • Purpose: The transcription factor c-Myc (or "Myc") is a master regulator of pathways driving cell growth and proliferation. MYC is deregulated in many human cancers, making its downstream target genes attractive candidates for drug development. We report the unexpected finding that B-cell lymphomas from mice and patients exhibit a striking correlation between high levels of Myc and checkpoint kinase 1 (Chk1). Experimental Design: By in vitro cell biology studies as well as preclinical studies using a genetically engineered mouse model, we evaluated the role of Chk1 in Myc-overexpressing cells. Results: We show that Myc indirectly induces Chek1 transcript and protein expression, independently of DNA damage response proteins such as ATM and p53. Importantly, we show that inhibition of Chk1, by either RNA interference or a novel highly selective small molecule inhibitor, results in caspase-dependent apoptosis that affects Myc-overexpressing cells in both in vitro and in vivo mouse models of B-cell lymphoma. Conclusion: Our data suggest that Chk1 inhibitors should be further evaluated as potential drugs against Myc-driven malignancies such as certain B-cell lymphoma/leukemia, neuroblastoma, and some breast and lung cancers. Clin Cancer Res; 17(22); 7067-79. (C) 2011 AACR.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view