SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ruishalme Iida) "

Search: WFRF:(Ruishalme Iida)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ahmad, Faiyaz, et al. (author)
  • Differential regulation of adipocyte PDE3B in distinct membrane compartments by insulin and the beta(3)-adrenergic receptor agonist CL316243: effects of caveolin-1 knockdown on formation/maintenance of macromolecular signalling complexes
  • 2009
  • In: BIOCHEMICAL JOURNAL. - 0264-6021. ; 424:3, s. 399-410
  • Journal article (peer-reviewed)abstract
    • In adipocytes, PDE3B (phosphodiesterase 3B) is an important regulatory effector in signalling pathways controlled by insulin and cAMP-increasing hormones. Stimulation of 3T3-L1 adipocytes with insulin or the beta(3)-adrenergic receptor agonist CL316243 (termed CL) indicated that insulin preferentially phosphorylated/activated PDE3B associated with internal membranes (endoplasmic reticulum/Golgi), whereas CL preferentially phosphorylated/activated PDE3B associated with caveolae. siRNA (small interfering RNA)-mediated KD (knockdown) of CAV-1 (caveolin-1) in 3T3-L1 adipocytes resulted in down-regulation of expression of membrane-associated PDE3B. Insulin-induced activation of PDE3B was reduced, whereas CL-mediated activation was almost totally abolished. Similar results were obtained in adipocytes from Cav-1-deficient mice. siRNA-mediated KID of CAV-1 in 3T3-L1 adipocytes also resulted in inhibition of CL-stimulated phosphorylation of HSL (hormone-sensitive lipase) and perilipin A, and of lipolysis. Superose 6 gel-filtration chromatography of solubilized membrane proteins from adipocytes stimulated with insulin or CL demonstrated the reversible assembly of distinct macromolecular complexes that contained P-32-phosphorylated PDE3B and signalling molecules thought to be involved in its activation. Insulin- and CL-induced macromolecular complexes were enriched in cholesterol, and contained certain common signalling proteins [14-3-3, PP2A (protein phosphatase 2A) and cav-1]. The complexes present in insulin-stimulated cells contained tyrosine-phosphorylated IRS-1 (insulin receptor substrate 1) and its downstream signalling proteins, whereas CL-activated complexes contained beta(3)-adrenergic receptor, PKA-RII [PKA (cAMP-dependent protein kinase)-regulatory subunit] and HSL. Insulin- and CL-mediated macromolecular complex formation was significantly inhibited by CAV-1 KID. These results suggest that cav-1 acts as a molecular chaperone or scaffolding molecule in cholesterol-rich lipid rafts that may be necessary for the proper stabilization and activation of PDE3B in response to CL and insulin.
  •  
2.
  • Lerm, Maria, et al. (author)
  • Inactivation of Cdc42 is nessecary for depolymerization of phagosomal F-actin and subsequent phagosomal maturation
  • 2007
  • In: Journal of Immunology. - 0022-1767 .- 1550-6606. ; 178:11, s. 7357-7365
  • Journal article (peer-reviewed)abstract
    • Phagocytosis is a complex process involving the activation of various signaling pathways, such as the Rho GTPases, and the subsequent reorganization of the actin cytoskeleton. In neutrophils, Rac and Cdc42 are activated during phagocytosis but less is known about the involvement of these GTPases during the different stages of the phagocytic process. The aim of this study was to elucidate the role of Cdc42 in phagocytosis and the subsequent phagosomal maturation. Using a TAT-based protein transduction technique, we introduced dominant negative and constitutively active forms of Cdc42 into neutrophil-like HL60 (human leukemia) cells that were allowed to phagocytose IgG-opsonized yeast particles. Staining of cellular F-actin in cells transduced with constitutively active Cdc42 revealed that the activation of Cdc42 induced sustained accumulation of periphagosomal actin. Moreover, the fusion of azurophilic granules with the phagosomal membrane was prevented by the accumulated F-actin. In contrast, introducing dominant negative Cdc42 impaired the translocation per se of azurophilic granules to the periphagosomal area. These results show that efficient phagosomal maturation and the subsequent eradication of ingested microbes in human neutrophils is dependent on a strictly regulated Cdc42. To induce granule translocation, Cdc42 must be in its active state but has to be inactivated to allow depolymerization of the F-actin cage around the phagosome, a process essential for phagolysosome formation.
  •  
3.
  • Öst, Anita, 1965-, et al. (author)
  • Attenuated mTOR signaling and enhanced autophagy in adipocytes from obese patients with type 2 diabetes
  • 2010
  • In: Molecular Medicine. - : Feinstein Institute for Medical Research. - 1076-1551 .- 1528-3658. ; 16:07-Aug, s. 235-246
  • Journal article (peer-reviewed)abstract
    • The protein kinase mammalian target of rapamycin (mTOR) mediates insulin control ofprotein synthesis, autophagy, mitochondrial function, and, through feedback signaling tophosphorylation of IRS1 at serine residues, mTOR directly controls insulin signaling. Weshow that in adipocytes from patients with type 2 diabetes (T2D) insulin activation of mTORis attenuated and that the resultant phenotype is compatible with, and can be mimicked by,loss of mTOR activation. In T2D adipocytes mitochondrial function is impaired andautophagy strongly upregulated, with concomitant increased autophagic destruction ofmitochondria and lipofuscin particles, and a dependence on autophagy for ATP production.Conversely, mitochondrial dysfunction attenuates insulin activation of mTOR, enhancesautophagy and attenuates feedback to IRS1. Our findings put mTOR in the driver´s seat of aninsulin resistance that in adipocytes can be fuelled by mitochondrial dysfunction,inflammation, ER-stress, or hypoxia.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view