SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Salmaso I.) "

Search: WFRF:(Salmaso I.)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  • Reguitti, A., et al. (author)
  • SN 2021foa, a transitional event between a Type IIn (SN 2009ip-like) and a Type Ibn supernova
  • 2022
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 662
  • Journal article (peer-reviewed)abstract
    • We present photometric and spectroscopic data of the unusual interacting supernova (SN) 2021foa. It rose to an absolute magnitude peak of Mr = −18 mag in 20 days. The initial light curve decline shows some luminosity fluctuations before a long-lasting flattening. A faint source (Mr ∼ −14 mag) was detected in the weeks preceding the main event, showing a slowly rising luminosity trend. The r-band absolute light curve is very similar to those of SN 2009ip-like events, with a faint and shorter duration brightening (‘Event A’) followed by a much brighter peak (‘Event B’). The early spectra of SN 2021foa show a blue continuum with narrow (∼400 km s−1) H emission lines that, two weeks later, reveal a complex profile, with a narrow P Cygni on top of an intermediate-width (∼2700 km s−1) component. At +12 days, metal lines in emission appear and He I lines become very strong, with He I λ5876 reaching half of the Hα luminosity, much higher than in previous SN 2009ip-like objects. We propose that SN 2021foa is a transitional event between the H-rich SN 2009ip-like SNe and the He-rich Type Ibn SNe.
  •  
5.
  • Salmaso, I., et al. (author)
  • Hidden shock powering the peak of SN 2020faa
  • 2023
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 673
  • Journal article (peer-reviewed)abstract
    • Context. The link between the fate of the most massive stars and the resulting supernova (SN) explosion is still a matter of debate, in major part because of the ambiguity among light-curve powering mechanisms. When stars explode as SNe, the light-curve luminosity is typically sustained by a central engine (radioactive decay, magnetar spin-down, or fallback accretion). However, since massive stars eject considerable amounts of material during their evolution, there may be a significant contribution coming from interactions with the previously ejected circumstellar medium (CSM). Reconstructing the progenitor configuration at the time of explosion requires a detailed analysis of the long-term photometric and spectroscopic evolution of the related transient. Aims. In this paper, we present the results of our follow-up campaign of SN 2020faa. Given the high luminosity and peculiar slow light curve, it is purported to have a massive progenitor. We present the spectro-photometric dataset and investigate di fferent options to explain the unusual observed properties that support this assumption. Methods. We computed the bolometric luminosity of the supernova and the evolution of its temperature, radius, and expansion velocity. We also fit the observed light curve with a multi-component model to infer information on the progenitor and the explosion mechanism. Results. Reasonable parameters are inferred for SN 2020faa with a magnetar of energy, Ep = 1.5(-0.2)(+0.5) x 10(50) erg, and spin-down time, t(spin) = 15 +/- 1 d, a shell mass, M-shell = 2.4(-0.4)(+0.5) M-circle dot, and kinetic energy, E-kin(shell) = 0.9(-0.3)(+0.5) x10(51) erg, and a core with M-core = 21.5(-0.7)(+1.4) M-circle dot and E(kin()core) = 3.9(-0.4)(+0.1) x 10(51) erg. In addition, we need an extra source to power the luminosity of the second peak. We find that a hidden interaction with either a CSM disc or several delayed and choked jets is a viable mechanism for supplying the required energy to achieve this e ffect.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view