SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Samukawa Seiji) "

Search: WFRF:(Samukawa Seiji)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Chen, Yafeng, et al. (author)
  • Temperature-dependent radiative and non-radiative dynamics of photo-excited carriers in extremely high-density and small InGaN nanodisks fabricated by neutral-beam etching using bio-nano-templates
  • 2018
  • In: Journal of Applied Physics. - : AMER INST PHYSICS. - 0021-8979 .- 1089-7550. ; 123:20
  • Journal article (peer-reviewed)abstract
    • Temperature-dependent radiative and non-radiative dynamics of photoexcited carriers were studied in In0.3Ga0.7N nanodisks (NDs) fabricated from quantum wells (QWs) by neutral-beam etching using bio-nano-templates. The NDs had a diameter of 5 nm, a thickness of 2 and 3 nm, and a sheet density of 2 x 10(11) cm(-2). The radiative decay time, reflecting the displacement between the electron and hole wavefunctions, is about 0.2 ns; this value is almost constant as a function of temperature in the NDs and not dependent on their thickness. We observed non-exponential decay curves of photoluminescence (PL) in the NDs, particularly at temperatures above 150 K. The thermal activation energies of PL quenching in the NDs are revealed to be about 110 meV, corresponding to the barrier heights of the valence bands in the disks. Therefore, hole escape is deemed responsible for the PL quenching, while thermal activation energies of 12 meV due to the trapping of carriers by defects were dominant in the mother QWs. The above-mentioned non-exponential PL decay curves can be attributed to variations in the rate of hole escape in the NDs because of fluctuations in the valence-band barrier height, which, in turn, is possibly due to compositional fluctuations in the QWs. We found that non-radiative trapping, characteristic of the original QW, also exists in about 1% of the NDs in a form that is not masked by other newly formable defects. Therefore, we suggest that additional defect formation is not significant during our ND fabrication process. Published by AIP Publishing.
  •  
2.
  • Higo, Akio, et al. (author)
  • Optical Study of Sub-10 nm In0.3Ga0.7N Quantum Nanodisks in GaN Nanopillars
  • 2017
  • In: ACS Photonics. - : American Chemical Society (ACS). - 2330-4022. ; 4:7, s. 1851-1857
  • Journal article (peer-reviewed)abstract
    • We have demonstrated the fabrication of homogeneously distributed In0.3Ga0.7N/GaN quantum nanodisks (QNDs) with a high density and average diameter of 10 nm or less in 30-nm-high nanopillars. The scalable top-down nanofabrication process used biotemplates that were spin-coated on an In0.3Ga0.7N/GaN single quantum well (SQW) followed by low-damage dry etching on ferritins with 7 nm diameter iron cores. The photoluminescence measurements at 70 K showed a blue shift of quantum energy of 420 meV from the In0.3Ga0.7N/GaN SQW to the QND. The internal quantum efficiency of the In0.3Ga0.7N/GaN QND was 100 times that of the SQW. A significant reduction in the quantum-confined Stark effect in the QND structure was observed, which concurred with the numerical simulation using a 3D Schrödinger equation. These results pave the way for the fabrication of large-scale III–N quantum devices using nanoprocessing, which is vital for optoelectronic communication devices.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view