SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(San Jose I) "

Search: WFRF:(San Jose I)

  • Result 1-10 of 18
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Jin, Shoko, et al. (author)
  • The wide-field, multiplexed, spectroscopic facility WEAVE : Survey design, overview, and simulated implementation
  • 2024
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 530:3, s. 2688-2730
  • Journal article (peer-reviewed)abstract
    • WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, saw first light in late 2022. WEAVE comprises a new 2-deg field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366-959nm at R similar to 5000, or two shorter ranges at . After summarizing the design and implementation of WEAVE and its data systems, we present the organization, science drivers, and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for similar to 3 million stars and detailed abundances for similar to 1.5 million brighter field and open-cluster stars; (ii) survey similar to 0.4 million Galactic-plane OBA stars, young stellar objects, and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey similar to 400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionized gas in z < 0.5 cluster galaxies; (vi) survey stellar populations and kinematics in field galaxies at 0.3 less than or similar to z less than or similar to 0.7; (vii) study the cosmic evolution of accretion and star formation using >1 million spectra of LOFAR-selected radio sources; and (viii) trace structures using intergalactic/circumgalactic gas at z > 2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator.
  •  
3.
  • Aoyama, T., et al. (author)
  • The anomalous magnetic moment of the muon in the Standard Model
  • 2020
  • In: Physics reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 887, s. 1-166
  • Research review (peer-reviewed)abstract
    • We review the present status of the Standard Model calculation of the anomalous magnetic moment of the muon. This is performed in a perturbative expansion in the fine-structure constant α and is broken down into pure QED, electroweak, and hadronic contributions. The pure QED contribution is by far the largest and has been evaluated up to and including O(α5) with negligible numerical uncertainty. The electroweak contribution is suppressed by (mμ/MW)2 and only shows up at the level of the seventh significant digit. It has been evaluated up to two loops and is known to better than one percent. Hadronic contributions are the most difficult to calculate and are responsible for almost all of the theoretical uncertainty. The leading hadronic contribution appears at O(α2) and is due to hadronic vacuum polarization, whereas at O(α3) the hadronic light-by-light scattering contribution appears. Given the low characteristic scale of this observable, these contributions have to be calculated with nonperturbative methods, in particular, dispersion relations and the lattice approach to QCD. The largest part of this review is dedicated to a detailed account of recent efforts to improve the calculation of these two contributions with either a data-driven, dispersive approach, or a first-principle, lattice-QCD approach. The final result reads aμSM = 116 591 810(43) x 10-11 and is smaller than the Brookhaven measurement by 3.7 σ. The experimental uncertainty will soon be reduced by up to a factor four by the new experiment currently running at Fermilab, and also by the future J-PARC experiment. This and the prospects to further reduce the theoretical uncertainty in the near future - which are also discussed here - make this quantity one of the most promising places to look for evidence of new physics.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Perez-Grijalba, V, et al. (author)
  • Plasma Aβ42/40 ratio alone or combined with FDG-PET can accurately predict amyloid-PET positivity: a cross-sectional analysis from the AB255 Study
  • 2019
  • In: Alzheimer's research & therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 11:1, s. 96-
  • Journal article (peer-reviewed)abstract
    • BackgroundTo facilitate population screening and clinical trials of disease-modifying therapies for Alzheimer’s disease, supportive biomarker information is necessary. This study was aimed to investigate the association of plasma amyloid-beta (Aβ) levels with the presence of pathological accumulation of Aβ in the brain measured by amyloid-PET. Both plasma Aβ42/40 ratio alone or combined with an FDG-PET-based biomarker of neurodegeneration were assessed as potential AD biomarkers.MethodsWe included 39 cognitively normal subjects and 20 patients with mild cognitive impairment from the AB255 Study who had undergone PiB-PET scans. Total Aβ40 and Aβ42 levels in plasma (TP42/40) were quantified using ABtest kits. Subjects were dichotomized as Aβ-PET positive or negative, and the ability of TP42/40 to detect Aβ-PET positivity was assessed by logistic regression and receiver operating characteristic analyses. Combination of plasma Aβ biomarkers and FDG-PET was further assessed as an improvement for brain amyloidosis detection and diagnosis classification.ResultsEighteen (30.5%) subjects were Aβ-PET positive. TP42/40 ratio alone identified Aβ-PET status with an area under the curve (AUC) of 0.881 (95% confidence interval [CI] = 0.779–0.982). Discriminating performance of TP42/40 to detect Aβ-PET-positive subjects yielded sensitivity and specificity values at Youden’s cutoff of 77.8% and 87.5%, respectively, with a positive predictive value of 0.732 and negative predictive value of 0.900. All these parameters improved after adjusting the model for significant covariates. Applying TP42/40 as the first screening tool in a sequential diagnostic work-up would reduce the number of Aβ-PET scans by 64%. Combination of both FDG-PET scores and plasma Aβ biomarkers was found to be the most accurate Aβ-PET predictor, with an AUC of 0.965 (95% CI = 0.913–0.100).ConclusionsPlasma TP42/40 ratio showed a relevant and significant potential as a screening tool to identify brain Aβ positivity in preclinical and prodromal stages of Alzheimer’s disease.
  •  
9.
  • Perez-Nadales, Elena, et al. (author)
  • Predictors of mortality in solid organ transplant recipients with bloodstream infections due to carbapenemase-producing Enterobacterales : The impact of cytomegalovirus disease and lymphopenia
  • 2020
  • In: American Journal of Transplantation. - : WILEY. - 1600-6135 .- 1600-6143. ; 20:6, s. 1629-1641
  • Journal article (peer-reviewed)abstract
    • Treatment of carbapenemase-producing Enterobacterales bloodstream infections in solid organ transplant recipients is challenging. The objective of this study was to develop a specific score to predict mortality in solid organ transplant recipients with carbapenemase-producing Enterobacterales bloodstream infections. A multinational, retrospective (2004-2016) cohort study (INCREMENT-SOT, ClinicalTrials.gov NCT02852902) was performed. The main outcome variable was 30-day all-cause mortality. The INCREMENT-SOT-CPE score was developed using logistic regression. The global cohort included 216 patients. The final logistic regression model included the following variables: INCREMENT-CPE mortality score >= 8 (8 points), no source control (3 points), inappropriate empirical therapy (2 points), cytomegalovirus disease (7 points), lymphopenia (4 points), and the interaction between INCREMENT-CPE score >= 8 and CMV disease (minus 7 points). This score showed an area under the receiver operating characteristic curve of 0.82 (95% confidence interval [CI] 0.76-0.88) and classified patients into 3 strata: 0-7 (low mortality), 8-11 (high mortality), and 12-17 (very-high mortality). We performed a stratified analysis of the effect of monotherapy vs combination therapy among 165 patients who received appropriate therapy. Monotherapy was associated with higher mortality only in the very-high (adjusted hazard ratio [HR] 2.82, 95% CI 1.13-7.06, P = .03) and high (HR 9.93, 95% CI 2.08-47.40, P = .004) mortality risk strata. A score-based algorithm is provided for therapy guidance.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view