SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Sangwan J.) "

Search: WFRF:(Sangwan J.)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Benson, Tyler W., et al. (author)
  • Gut Microbiota-Derived Trimethylamine N-Oxide Contributes to Abdominal Aortic Aneurysm Through Inflammatory and Apoptotic Mechanisms
  • 2023
  • In: Circulation. - : Lippincott Williams & Wilkins. - 0009-7322 .- 1524-4539. ; 147:14, s. 1079-1096
  • Journal article (peer-reviewed)abstract
    • Background:Large-scale human and mechanistic mouse studies indicate a strong relationship between the microbiome-dependent metabolite trimethylamine N-oxide (TMAO) and several cardiometabolic diseases. This study aims to investigate the role of TMAO in the pathogenesis of abdominal aortic aneurysm (AAA) and target its parent microbes as a potential pharmacological intervention.Methods:TMAO and choline metabolites were examined in plasma samples, with associated clinical data, from 2 independent patient cohorts (N=2129 total). Mice were fed a high-choline diet and underwent 2 murine AAA models, angiotensin II infusion in low-density lipoprotein receptor-deficient (Ldlr(-/-)) mice or topical porcine pancreatic elastase in C57BL/6J mice. Gut microbial production of TMAO was inhibited through broad-spectrum antibiotics, targeted inhibition of the gut microbial choline TMA lyase (CutC/D) with fluoromethylcholine, or the use of mice genetically deficient in flavin monooxygenase 3 (Fmo3(-/-)). Finally, RNA sequencing of in vitro human vascular smooth muscle cells and in vivo mouse aortas was used to investigate how TMAO affects AAA.Results:Elevated TMAO was associated with increased AAA incidence and growth in both patient cohorts studied. Dietary choline supplementation augmented plasma TMAO and aortic diameter in both mouse models of AAA, which was suppressed with poorly absorbed oral broad-spectrum antibiotics. Treatment with fluoromethylcholine ablated TMAO production, attenuated choline-augmented aneurysm initiation, and halted progression of an established aneurysm model. In addition, Fmo3(-/-) mice had reduced plasma TMAO and aortic diameters and were protected from AAA rupture compared with wild-type mice. RNA sequencing and functional analyses revealed choline supplementation in mice or TMAO treatment of human vascular smooth muscle cells-augmented gene pathways associated with the endoplasmic reticulum stress response, specifically the endoplasmic reticulum stress kinase PERK.Conclusions:These results define a role for gut microbiota-generated TMAO in AAA formation through upregulation of endoplasmic reticulum stress-related pathways in the aortic wall. In addition, inhibition of microbiome-derived TMAO may serve as a novel therapeutic approach for AAA treatment where none currently exist.
  •  
2.
  • Dutta, Tanmoy, 1998, et al. (author)
  • Prolonged Inflammation and Infectious Changes in the Corneal Epithelium Are Associated with Persistent Epithelial Defect (PED)
  • 2023
  • In: Pathogens. - : MDPI AG. - 2076-0817. ; 12:2
  • Journal article (peer-reviewed)abstract
    • Purpose: Failure of rapid re-epithelialization within 10-14 days after corneal injury, even with standard supportive treatment, is referred to as persistent corneal epithelial (CE) defect (PED). Though an array of genes regulates reepithelization, their mechanisms are poorly understood. We sought to understand the network of genes driving the re-epithelialization in PED. Method: After obtaining informed consent, patients underwent an ophthalmic examination. Epithelial scrapes and tears samples of six PED patients and six individuals (control) undergoing photorefractive keratectomy (PRK) were collected. RNA isolation and quantification were performed using either the epithelial scrape taken from PED patients or from HCLE cells treated with control tears or tears of PED patients. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect the expression of a few important genes in CE homeostasis, inflammation, and cell-cell communication, viz., Kruppel-like factor 4 (KLF4), GPX4, IL6, TNF alpha, STING, IL8, desmoglein, and E-cadherin, among others. Their expressions were normalized with their respective housekeeping genes and fold changes were recorded. KLF4 localization and MMPs activity was carried out via immunofluorescence and zymography, respectively. Results: KLF4, a transcription factor important for CE homeostasis, was upregulated in tears-treated HCLE cells and downregulated in PED patients compared to the healthy PRK group. Cell-cell communication genes were also upregulated in tears-treated cells, whereas they were downregulated in the PED tissue group. Genes involved in proinflammation (IL6, 282-fold; TNF alpha, 43-fold; IL8, 4.2-fold) were highly upregulated in both conditions. MMP9 activity increased upon tears treatment. Conclusions: This study suggests that tears create an acute proinflammatory milieu driving the PED disease pathology, whereas the PED patients scrapes are an indicator of the chronic stage of the disease. Interferons, pro-inflammatory genes, and their pathways are involved in PED, which can be a potential target for inducing epithelialization of the cornea.
  •  
3.
  • Trippodo, Elisa, et al. (author)
  • Air-stable ternary organic solar cells achieved by using fullerene additives in non-fullerene acceptor-polymer donor blends
  • 2023
  • In: Journal of Materials Chemistry C. - : ROYAL SOC CHEMISTRY. - 2050-7526 .- 2050-7534. ; 11:24, s. 8074-8083
  • Journal article (peer-reviewed)abstract
    • Organic solar cells (OSCs) based on donor-acceptor blends have shown a rapid improvement in power conversion efficiency (PCE) now approaching, for small cells, those of the state-of-the art commercial solar modules. However, performance degradation remains one of the most critical impediments for OSC technology commercialization. Ternary solar cells where a third component, for instance an acceptor, is added to a non-fullerene acceptor-polymer donor blend are an effective approach for improving both OSC efficiency and long-term stability. Here, we study the role of two fullerene acceptors, ET18 and PCBM, as the third component in P-D:Y6 blends. These fullerene derivatives significantly enhance the cell stability, which retained > 90% of their initial PCEs (13-14%) even after storage in air for 6 months, compared to only similar to 20% retention for the binary devices. GIWAXS, AFM, in situ impedance spectroscopy and femtosecond transient absorption spectroscopy measurements reveal that the enhanced stability of the ternary devices results from a more robust blend morphology reducing charge recombination in the ternary devices during aging.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view