SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Sarin Nikhil) "

Search: WFRF:(Sarin Nikhil)

  • Result 1-10 of 14
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Rosswog, Stephan, 1968-, et al. (author)
  • Mergers of double NSs with one high-spin component : brighter kilonovae and fallback accretion, weaker gravitational waves
  • 2024
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 530:2, s. 2336-2354
  • Journal article (peer-reviewed)abstract
    • Neutron star (NS) mergers where both stars have negligible spins are commonly considered as the most likely 'standard' case. In globular clusters, however, the majority of NSs have been spun up to millisecond (ms) periods and, based on observed systems, we estimate that a non-negligible fraction of all double NS mergers ($\sim 4\pm 2\, {{\ \rm per\ cent}}$) contains one component with a spin of a (few) ms. We use the Lagrangian numerical relativity code SPHINCS_BSSN to simulate mergers where one star has no spin and the other has a dimensionless spin parameter of chi = 0.5. Such mergers exhibit several distinct signatures compared to irrotational cases. They form only one, very pronounced spiral arm and they dynamically eject an order of magnitude more mass of unshocked material at the original, very low electron fraction. One can therefore expect particularly bright, red kilonovae. Overall, the spinning case collisions are substantially less violent and they eject smaller amounts of shock-generated semirelativistic material. Therefore, the ejecta produce a weaker blue/ultraviolet kilonova precursor signal, but - since the total amount is larger - brighter kilonova afterglows months after the merger. The spinning cases also have significantly more fallback accretion and thus could power late-time X-ray flares. Since the post-merger remnant loses energy and angular momentum significantly less efficiently to gravitational waves, such systems can delay a potential collapse to a black hole and are therefore candidates for merger-triggered gamma-ray bursts with longer emission time-scales.
  •  
2.
  • Anand, Shreya, et al. (author)
  • Collapsars as Sites of r-process Nucleosynthesis : Systematic Photometric Near-infrared Follow-up of Type Ic-BL Supernovae
  • 2024
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 962:1
  • Journal article (peer-reviewed)abstract
    • One of the open questions following the discovery of GW170817 is whether neutron star (NS) mergers are the only astrophysical sites capable of producing r-process elements. Simulations have shown that 0.01–0.1 M⊙ of r-process material could be generated in the outflows originating from the accretion disk surrounding the rapidly rotating black hole that forms as a remnant to both NS mergers and collapsing massive stars associated with long-duration gamma-ray bursts (collapsars). The hallmark signature of r-process nucleosynthesis in the binary NS merger GW170817 was its long-lasting near-infrared (NIR) emission, thus motivating a systematic photometric study of the light curves of broad-lined stripped-envelope (Ic-BL) supernovae (SNe) associated with collapsars. We present the first systematic study of 25 SNe Ic-BL—including 18 observed with the Zwicky Transient Facility and 7 from the literature—in the optical/NIR bands to determine what quantity of r-process material, if any, is synthesized in these explosions. Using semi-analytic models designed to account for r-process production in SNe Ic-BL, we perform light curve fitting to derive constraints on the r-process mass for these SNe. We also perform independent light curve fits to models without the r-process. We find that the r-process-free models are a better fit to the light curves of the objects in our sample. Thus, we find no compelling evidence of r-process enrichment in any of our objects. Further high-cadence infrared photometric studies and nebular spectroscopic analysis would be sensitive to smaller quantities of r-process ejecta mass or indicate whether all collapsars are completely devoid of r-process nucleosynthesis.
  •  
3.
  • Joshi, Peter K, et al. (author)
  • Directional dominance on stature and cognition in diverse human populations
  • 2015
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 523:7561, s. 459-462
  • Journal article (peer-reviewed)abstract
    • Homozygosity has long been associated with rare, often devastating, Mendelian disorders, and Darwin was one of the first to recognize that inbreeding reduces evolutionary fitness. However, the effect of the more distant parental relatedness that is common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power. Here we use runs of homozygosity to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts, and find statistically significant associations between summed runs of homozygosity and four complex traits: height, forced expiratory lung volume in one second, general cognitive ability and educational attainment (P < 1 × 10(-300), 2.1 × 10(-6), 2.5 × 10(-10) and 1.8 × 10(-10), respectively). In each case, increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months' less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing evidence that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been.
  •  
4.
  • Omand, Conor M. B., 1992-, et al. (author)
  • A generalized semi-analytic model for magnetar-driven supernovae
  • 2024
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 527:3, s. 6455-6472
  • Journal article (peer-reviewed)abstract
    • Several types of energetic supernovae, such as superluminous supernovae (SLSNe) and broad-line Ic supernovae (Ic-BL SNe), could be powered by the spin-down of a rapidly rotating magnetar. Currently, most models used to infer the parameters for potential magnetar-driven supernovae make several unsuitable assumptions that likely bias the estimated parameters. In this work, we present a new model for magnetar-driven supernovae that relaxes several of these assumptions and an inference workflow that enables accurate estimation of parameters from light curves of magnetar-driven supernovae. In particular, in this model, we include the dynamical evolution of the ejecta, coupling it to the energy injected by the magnetar itself while also allowing for non-dipole spin down. We show that the model can reproduce SLSN and Ic-BL SN light curves consistent with the parameter space from computationally expensive numerical simulations. We also show the results of parameter inference on four well-known example supernovae, demonstrating the model's effectiveness at capturing the considerable diversity in magnetar-driven supernova light curves. The model fits each light curve well and recovers parameters broadly consistent with previous works. This model will allow us to explore the full diversity of magnetar-driven supernovae under one theoretical framework, more accurately characterize these supernovae from only photometric data, and make more accurate predictions of future multiwavelength emission to test the magnetar-driven scenario better.
  •  
5.
  • Sarin, Nikhil, et al. (author)
  • Confronting the Neutron Star Population with Inverse Cascades
  • 2023
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 952:1, s. L21-
  • Journal article (peer-reviewed)abstract
    • The origin and evolution of magnetic fields of neutron stars from birth have long been a source of debate. Here, motivated by recent simulations of the Hall cascade with magnetic helicity, we invoke a model where the largescale magnetic field of neutron stars grows as a product of small-scale turbulence through an inverse cascade. We apply this model to a simulated population of neutron stars at birth and show how this model can account for the evolution of such objects across the PP. diagram, explaining both pulsar and magnetar observations. Under the assumption that small-scale turbulence is responsible for large-scale magnetic fields, we place a lower limit on the spherical harmonic degree of the energy-carrying magnetic eddies of approximate to 40. Our results favor the presence of a highly resistive pasta layer at the base of the neutron star crust. We further discuss the implications of this paradigm on direct observables, such as the nominal age and braking index of pulsars.
  •  
6.
  • Sarin, Nikhil, et al. (author)
  • Heavy-element production in a compact object merger observed by JWST
  • 2024
  • In: Nature. - 0028-0836 .- 1476-4687. ; 626, s. 737-741
  • Journal article (peer-reviewed)abstract
    • The mergers of binary compact objects such as neutron stars and black holes are of central interest to several areas of astrophysics, including as the progenitors of gamma-ray bursts (GRBs)1, sources of high-frequency gravitational waves (GWs)2 and likely production sites for heavy-element nucleosynthesis by means of rapid neutron capture (the r-process)3. Here we present observations of the exceptionally bright GRB 230307A. We show that GRB 230307A belongs to the class of long-duration GRBs associated with compact object mergers4,5,6 and contains a kilonova similar to AT2017gfo, associated with the GW merger GW170817 (refs. 7,8,9,10,11,12). We obtained James Webb Space Telescope (JWST) mid-infrared imaging and spectroscopy 29 and 61 days after the burst. The spectroscopy shows an emission line at 2.15 microns, which we interpret as tellurium (atomic mass A = 130) and a very red source, emitting most of its light in the mid-infrared owing to the production of lanthanides. These observations demonstrate that nucleosynthesis in GRBs can create r-process elements across a broad atomic mass range and play a central role in heavy-element nucleosynthesis across the Universe.
  •  
7.
  • Sarin, Nikhil, et al. (author)
  • Linking the rates of neutron star binaries and short gamma-ray bursts
  • 2022
  • In: Physical Review D. - : American Physical Society (APS). - 2470-0010 .- 2470-0029. ; 105:8
  • Journal article (peer-reviewed)abstract
    • Short gamma-ray bursts are believed to be produced by both binary neutron star (BNS) and neutron star-black hole (NSBH) mergers. We use current estimates for the BNS and NSBH merger rates to calculate the fraction of observable short gamma-ray bursts produced through each channel. This allows us to constrain merger rates of a BNS to R-BNS = 384(-213)(+431) Gpc(-3) yr(-1) (90% credible interval), a 16% decrease in the rate uncertainties from the second Laser Interferometer Gravitational Wave Observatory (LIGO)-Virgo Gravitational-Wave Transient Catalog. Assuming a top-hat emission profile with a large Lorentz factor, we constrain the average opening angle of gamma-ray burst jets produced in BNS mergers to approximate to 15 degrees. We also measure the fraction of BNS and NSBH mergers that produce an observable short gamma-ray burst to be 0.02(-0.01)(+0.02) and 0.01 +/- 0.01, respectively, and find that greater than or similar to 40% of BNS mergers launch jets (90% confidence). We forecast constraints for future gravitational-wave detections given different modeling assumptions, including the possibility that BNS and NSBH jets are different. With 24 BNS and 55 NSBH observations, expected within six months of the LIGO-Virgo-Kamioka Gravitational Wave Detector network operating at design sensitivity, it will be possible to constrain the fraction of BNS and NSBH mergers that launch jets with 10% precision. Within a year of observations, we can determine whether the jets launched in NSBH mergers have a different structure than those launched in BNS mergers and rule out whether greater than or similar to 80% of binary neutron star mergers launch jets. We discuss the implications of future constraints on understanding the physics of short gamma-ray bursts and binary evolution.
  •  
8.
  • Sarin, Nikhil, et al. (author)
  • Low-efficiency long gamma-ray bursts : a case study with AT2020blt
  • 2022
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 512:1, s. 1391-1399
  • Journal article (peer-reviewed)abstract
    • The Zwicky Transient Facility recently announced the detection of an optical transient AT2020blt at redshift z = 2.9, consistent with the afterglow of an on-axis gamma-ray burst. However, no prompt emission was observed. We analyse AT2020blt with detailed models, showing the data are best explained as the afterglow of an on-axis long gamma-ray burst, ruling out other hypotheses such as a cocoon and a low-Lorentz factor jet. We search Fermi data for prompt emission, setting deeper upper limits on the prompt emission than in the original detection paper. Together with KONUS-Wind observations, we show that the gamma-ray efficiency of AT2020blt is less than or similar to 0.3-4.5 per cent. We speculate that AT2020blt and AT2021any belong to the low-efficiency tail of long gamma-ray burst distributions that are beginning to be readily observed due to the capabilities of new observatories like the Zwicky Transient Facility.
  •  
9.
  • Sarin, Nikhil, et al. (author)
  • Missed opportunities : GRB 211211A and the case for continual gravitational-wave coverage with a single observatory
  • 2023
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 518:4, s. 5483-5489
  • Journal article (peer-reviewed)abstract
    • Gamma-ray burst GRB 211211A may have been the result of a neutron star merger at asymptotic to 350 Mpc. Ho we ver, none of the LIGO- Virgo detectors were operating at the time. We show that the gra vitational-wa ve signal from a GRB 211211A-like binary neutron star inspiral in the next LIGO-Virgo-KAGRA observing run (O4) would be below the conventional detection threshold, ho we ver a coincident gamma-ray burst observation would provide necessary information to claim a statistically significant multimessenger observation. We calculate that with O4 sensitivity, approximately 11 per cent of gamma-ray bursts within 600 Mpc will produce a confident association between the gra vitational-wa ve binary neutron star inspiral signature and the prompt gamma-ray signature. This corresponds to a coincident detection rate of 0 . 22(-0.22)(+8.3) yr(-1), where the uncertainties are the 90 per cent confidence intervals arising from uncertainties in the absolute merger rate, beaming and jet-launching fractions. These increase to approximately 34 per cent and 0.71(-0.70)(+26.8) yr(-1) with proposed O5 sensitivity. We show that the abo v e numbers do not depend significantly on the number of gra vitational-wa ve observatories operating with the specific sensitivity. That is, the number of confident joint gamma-ray burst and gravitational-wave detections is only marginally improved with two or three detectors operating compared to a single detector. It is therefore worth considering whether one detector with sufficient sensitivity (post O4) should remain in sky-watch mode at all times to elucidate the true nature of GRB 211211A-like events, a proposal we discuss in detail.
  •  
10.
  • Sarin, Nikhil, et al. (author)
  • Multimessenger astronomy with a kHz-band gravitational-wave observatory
  • 2022
  • In: Publications Astronomical Society of Australia. - : Cambridge University Press (CUP). - 1323-3580 .- 1448-6083. ; 39
  • Journal article (peer-reviewed)abstract
    • Proposed next-generation networks of gravitational-wave observatories include dedicated kilohertz instruments that target neutron star science, such as the proposed Neutron Star Extreme Matter Observatory, NEMO. The original proposal for NEMO highlighted the need for it to exist in a network of gravitational-wave observatories to ensure detection confidence and sky localisation of sources. We show that NEMO-like observatories have significant utility on their own as coincident electromagnetic observations can provide the detection significance and sky localisation. We show that, with a single NEMO-like detector and expected electromagnetic observatories in the late 2020 s and early 2030 s such as the Vera C. Rubin observatory and SVOM, approximately 40% of all binary neutron star mergers detected with gravitational waves could be confidently identified as coincident multimessenger detections. We show that we expect 2(-1)(+10)yr(-1) coincident observations of gravitational-wave mergers with gamma-ray burst prompt emission, 13(-10)(+23)yr(-1) detections with kionova observations, and 4(-3)(+18)yr(-1) with broadband afterglows and kionovae, where the uncertainties are 90% confidence intervals arising from uncertainty in current merger-rate estimates. Combined, this implies a coincident detection rate of 14(-11)(+25)yr(-1) out to 300 Mpc. These numbers indicate significant science potential for a single kilohertz gravitational-wave detector operating without a global network of other gravitational-wave observatories.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view