SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sarkar Omprakash) "

Sökning: WFRF:(Sarkar Omprakash)

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bajracharya, Suman, et al. (författare)
  • Chapter 12 - Advances in gas fermentation processes
  • 2022
  • Ingår i: Current Developments in Biotechnology and Bioengineering. - : Elsevier. - 9780323911672 ; , s. 321-351
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Microbial metabolism enables the sustainable synthesis of fuels and chemicals from gaseous substrates (H2, CO, and CO2), thus drastically diminishing the carbon load in the atmosphere. Various value-added biochemicals and biofuels, such as acetate, methane, ethanol, butanol, butyrate, caproate, and bioplastics, have been produced during the conversion of syngas or H2/CO2, using a variety of microorganisms as biocatalysts. Gas fermentation processes using acetogenic and methanogenic organisms are being extensively investigated. This chapter provides an overview of microbial CO and CO2 conversion technology, with an emphasis on recent developments and integration with renewable electricity for the generation of H2 or other forms of electron donors. A discussion on technological challenges in gas fermentation addresses issues, such as poor mass transfer, low microbial biomass, and low productivity. It also presents possible solutions based on the latest advances in bioelectrochemical processes including microbial gas electrofermentation. Finally, the chapter includes a sustainability analysis of the process and includes a brief update on commercially established companies operating gas fermentation systems. Overall, an integrated approach combining gas fermentation and renewable electricity offers an opportunity for the development of CO and CO2- based biochemical and biofuel production at commercial scale.
  •  
2.
  •  
3.
  • Iragavarapu, Gayathri Priya, et al. (författare)
  • Bioprocessing of Waste for Renewable Chemicals and Fuels to Promote Bioeconomy
  • 2023
  • Ingår i: Energies. - : MDPI. - 1996-1073. ; 16:9
  • Tidskriftsartikel (refereegranskat)abstract
    • The world’s rising energy needs, and the depletion of fossil resources demand a shift from fossil-based feedstocks to organic waste to develop a competitive, resource-efficient, and low-carbon sustainable economy in the long run. It is well known that the production of fuels and chemicals via chemical routes is advantageous because it is a well-established technology with low production costs. However, the use of toxic/environmentally harmful and expensive catalysts generates toxic intermediates, making the process unsustainable. Alternatively, utilization of renewable resources for bioprocessing with a multi-product approach that aligns novel integration improves resource utilization and contributes to the “green economy”. The present review discusses organic waste bioprocessing through the anaerobic fermentation (AF) process to produce biohydrogen (H2), biomethane (CH4), volatile fatty acids (VFAs) and medium chain fatty acids (MCFA). Furthermore, the roles of photosynthetic bacteria and microalgae for biofuel production are discussed. In addition, a roadmap to create a fermentative biorefinery approach in the framework of an AF-integrated bioprocessing format is deliberated, along with limitations and future scope. This novel bioprocessing approach significantly contributes to promoting the circular bioeconomy by launching complete carbon turnover practices in accordance with sustainable development goals.
  •  
4.
  • Kumar, A. Naresh, et al. (författare)
  • Upgrading the value of anaerobic fermentation via renewable chemicals production : A sustainable integration for circular bioeconomy
  • 2022
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 806, part 1
  • Forskningsöversikt (refereegranskat)abstract
    • The single bioprocess approach has certain limitations in terms of process efficiency, product synthesis, and effective resource utilization. Integrated or combined bioprocessing maximizes resource recovery and creates a novel platform to establish sustainable biorefineries. Anaerobic fermentation (AF) is a well-established process for the transformation of organic waste into biogas; conversely, biogas CO2 separation is a challenging and cost-effective process. Biological fixation of CO2 for succinic acid (SA) mitigates CO2 separation issues and produces commercially important renewable chemicals. Additionally, utilizing digestate rich in volatile fatty acid (VFA) to produce medium-chain fatty acids (MCFAs) creates a novel integrated platform by utilizing residual organic metabolites. The present review encapsulates the advantages and limitations of AF along with biogas CO2 fixation for SA and digestate rich in VFA utilization for MCFA in a closed-loop approach. Biomethane and biohydrogen process CO2 utilization for SA production is cohesively deliberated along with the role of biohydrogen as an alternative reducing agent to augment SA yields. Similarly, MCFA production using VFA as a substrate and function of electron donors namely ethanol, lactate, and hydrogen are comprehensively discussed. A road map to establish the fermentative biorefinery approach in the framework of AF integrated sustainable bioprocess development is deliberated along with limitations and factors influencing for techno-economic analysis. The discussed integrated approach significantly contributes to promote the circular bioeconomy by establishing carbon-neutral processes in accord with sustainable development goals.
  •  
5.
  • Matsakas, Leonidas, et al. (författare)
  • A novel hybrid organosolv-steam explosion pretreatment and fractionation method delivers solids with superior thermophilic digestibility to methane
  • 2020
  • Ingår i: Bioresource Technology. - : Elsevier. - 0960-8524 .- 1873-2976. ; 316
  • Tidskriftsartikel (refereegranskat)abstract
    • Rising environmental concerns and the imminent depletion of fossil resources have sparked a strong interest towards the production of renewable energy such as biomethane. Inclusion of alternative feedstock’s such as lignocellulosic biomass could further expand the production of biomethane. The present study evaluated the potential of a novel hybrid organosolv-steam explosion fractionation for delivering highly digestible pretreated solids from birch and spruce woodchips. The highest methane production yield was 176.5 mLCH4 gVS−1 for spruce and 327.2 mL CH4 gVS−1 for birch. High methane production rates of 1.0–6.3 mL min−1 (spruce) and 6.0–35.5 mL min−1 (birch) were obtained, leading to a rapid digestion, with 92% of total methane from spruce being generated in 80 h and 95% of that from birch in 120 h. These results demonstrate the elevated potential of the novel method to fractionate spruce and birch biomass and deliver cellulose-rich pretreated solids with superior digestibility.
  •  
6.
  • Mohanakrishna, Gunda, et al. (författare)
  • Dark fermentative hydrogen production: Potential of food waste as future energy needs
  • 2023
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 888
  • Tidskriftsartikel (refereegranskat)abstract
    • Globally, food waste (FW) is found to be one of the major constituents creating several hurdles in waste management. On the other hand, the energy crisis is increasing and the limited fossil fuel resources available are not sufficient for energy needed for emerging population. In this context, biohydrogen production approach through valorization of FW is emerging as one of the sustainable and eco-friendly options. The present review explores FW sources, characteristics, and dark fermentative production of hydrogen along with its efficiency. FW are highly biodegradable and rich in carbohydrates which can be efficiently utilized by anaerobic bacteria. Based on the composition of FW, several pretreatment methods can be adapted to improve the bioavailability of the organics. By-products of dark fermentation are organic acids that can be integrated with several secondary bioprocesses. The versatility of secondary products is ranging from energy generation to biochemicals production. Integrated approaches facilitate in enhanced energy harvesting along with extended wastewater treatment. The review also discusses various parameters like pH, temperature, hydraulic retention time and nutrient supplementation to enhance the process efficiency of biohydrogen production. The application of solid-state fermentation (SSF) in dark fermentation improves the process efficiency. Dark fermentation as the key process for valorization and additional energy generating process can make FW the most suitable substrate for circular economy and waste based biorefinery.
  •  
7.
  • Patel, Alok, Dr. 1989-, et al. (författare)
  • Valorization of volatile fatty acids derived from low-cost organic waste for lipogenesis in oleaginous microorganisms-A review
  • 2021
  • Ingår i: Bioresource Technology. - : Elsevier. - 0960-8524 .- 1873-2976. ; 321
  • Forskningsöversikt (refereegranskat)abstract
    • To meet environmental sustainability goals, microbial oils have been suggested as an alternative to petroleum-based products. At present, microbial fermentation for oil production relies on sugar-based feedstocks. However, these substrates are costly, in limited supply, and present an elevated risk of contamination. Volatile fatty acids, which are generated as intermediates during anaerobic digestion of organic waste, could replace conventional sugar sources for microbial oil production. They comprise short-chain (C2 to C6) organic acids and are employed as building blocks in the chemical industry. The present review discusses the use of oleaginous microorganisms for the production of biofuels and added-value products starting from volatile fatty acids as feedstocks. The review describes the metabolic pathways enabling lipogenesis from volatile fatty acids, and focuses on strategies to enhance lipid accumulation in oleaginous microorganisms by tuning the ratios of volatile fatty acids generated via anaerobic fermentation.
  •  
8.
  • Saito, Kyo, et al. (författare)
  • Quantification of the Monomer Compositions of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Poly(3-hydroxyvalerate) by Alkaline Hydrolysis and Using High-Performance Liquid Chromatography
  • 2023
  • Ingår i: Bioengineering. - : Mdpi. - 2306-5354. ; 10:5
  • Tidskriftsartikel (refereegranskat)abstract
    • With the growing interest in bioplastics, there is an urgent need to develop rapid analysis methods linked to production technology development. This study focused on the production of a commercially non-available homopolymer, poly(3-hydroxyvalerate) (P(3HV)), and a commercially available copolymer, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-co-3HV)), through fermentation using two different bacterial strains. The bacteria Chromobacterium violaceum and Bacillus sp. CYR1 were used to produce P(3HV) and P(3HB-co-3HV), respectively. The bacterium Bacillus sp. CYR1 produced 415 mg/L of P(3HB-co-3HV) when incubated with acetic acid and valeric acid as the carbon sources, whereas the bacterium C. violaceum produced 0.198 g of P(3HV)/g dry biomass when incubated with sodium valerate as the carbon source. Additionally, we developed a fast, simple, and inexpensive method to quantify P(3HV) and P(3HB-co-3HV) using high-performance liquid chromatography (HPLC). As the alkaline decomposition of P(3HB-co-3HV) releases 2-butenoic acid (2BE) and 2-pentenoic acid (2PE), we were able to determine the concentration using HPLC. Moreover, calibration curves were prepared using standard 2BE and 2PE, along with sample 2BE and 2PE produced by the alkaline decomposition of poly(3-hydroxybutyrate) and P(3HV), respectively. Finally, the HPLC results obtained by our new method were compared using gas chromatography (GC) analysis.
  •  
9.
  • Sarkar, Omprakash, et al. (författare)
  • Biogas potential of organosolv pretreated wheat straw as mono and co-substrate: substrate synergy and microbial dynamics
  • 2024
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Anaerobic digestion (AD) technology can potentially address the gap between energy demand and supply playing a crucial role in the production of sustainable energy from utilization of biogenic waste materials as feedstock. The biogas production from anaerobic digestion is primarily influenced by the chemical compositions and biodegradability of the feedstock. Organosolv-steam explosion offers a constructive approach as a promising pretreatment method for the fractionation of lignocellulosic biomasses delivering high cellulose content.This study showed how synergetic co-digestion serves to overcome the challenges of mono-digestion's low efficiency. Particularly, the study evaluated the digestibility of organosolv-steam pretreated wheat straw (WSOSOL) in mono as well as co-digesting substrate with cheese whey (CW) and brewery spent grains (BSG). The highest methane yield was attained with co-digestion of WSOSOL + CW (338 mL/gVS) representing an enhanced biogas output of 1–1.15 times greater than its mono digestion. An ammonium production was favored under co-digestion strategy accounting for 921 mg/L from WSOSOL + BSG. Metagenomic study was conducted to determine the predominant bacteria and archaea, as well as its variations in their populations and their functional contributions during the AD process. The Firmicutes have been identified as playing a significant role in the hydrolysis process and the initial stages of AD. An enrichment of the most prevalent archaea genera enriched were Methanobacterium, Methanothrix, and Methanosarsina. Reactors digesting simpler substrate CW followed the acetoclastic, while digesting more complex substrates like BSG and WSOSOL followed the hydrogenotrophic pathway for biomethane production. To regulate the process for an enhanced AD process to maximize CH4, a comprehensive understanding of microbial communities is beneficial.
  •  
10.
  • Sarkar, Omprakash, et al. (författare)
  • Carbonic anhydrase assisted acidogenic fermentation of forest residues for low carbon hydrogen and volatile fatty acid production: enhanced in situ CO2 reduction and microbiological analysis
  • 2024
  • Ingår i: Green Chemistry. - : Royal Society of Chemistry. - 1463-9262 .- 1463-9270. ; 26:9, s. 5564-5582
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbonic anhydrase (CA) is considered an efficient enzyme for fermentation systems exhibiting a wide range of applications, enhancing both the efficacy and output of the fermentation process. The present study aimed to evaluate the production of acidogenic biohydrogen (bioH2) and volatile fatty acids (VFA) using forest residues as a renewable feedstock. Specifically, the study examined the integration of CA derived from Desulfovibrio vulgaris into the acidogenic fermentation (AF) process. The experimental procedure involved a cascade design conducted in two distinct phases. In phase I, the concentration of CA in the AF was systematically optimized, with glucose serving as the substrate. In phase II, three influential parameters (pH, pressurization with in situ generated gas and organic load) were evaluated on AF in association with optimized CA concentration from phase I. In phase II, glucose was replaced with renewable sugars obtained from forest residues after steam explosion pretreatment followed by enzymatic saccharification. The incorporation of CA in AF was found to be beneficial in steering acidogenic metabolites. Alkaline conditions (pH 8) promoted bioH2, yielding 210.9 mLH2 gCOD−1, while introducing CA further increased output to 266.6 mLH2 gCOD−1. This enzymatic intervention improved the production of bioH2 conversion efficiency (HCE) from 45.3% to 57.2%. Pressurizing the system accelerated VFA production with complete utilization of in situ produced H2 + CO2 compared to non-pressurized systems. Particularly, caproic acid production was improved under pressurized conditions which was accomplished by the targeted enrichment of chain-elongating bacteria in the mixed culture. The microbial diversity analysis showed the dominance of Firmicutes suggesting a significant degree of adaptation to the experimental contexts, leading to an enhanced production of acidogenic metabolites.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy