SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Sarker Satyajit D.) "

Search: WFRF:(Sarker Satyajit D.)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Afroz, Mohasana, et al. (author)
  • Ethnobotany and Antimicrobial Peptides From Plants of the Solanaceae Family : An Update and Future Prospects
  • 2020
  • In: Frontiers in Pharmacology. - : Frontiers Media SA. - 1663-9812. ; 11
  • Research review (peer-reviewed)abstract
    • The Solanaceae is an important plant family that has been playing an essential role in traditional medicine and human nutrition. Members of the Solanaceae are rich in bioactive metabolites and have been used by different tribes around the world for ages. Antimicrobial peptides (AMPs) from plants have drawn great interest in recent years and raised new hope for developing new antimicrobial agents for meeting the challenges of antibiotic resistance. This review aims to summarize the reported AMPs from plants of the Solanaceae with possible molecular mechanisms of action as well as to correlate their traditional uses with reported antimicrobial actions of the peptides. A systematic literature study was conducted using different databases until August 2019 based on the inclusion and exclusion criteria. According to literature, a variety of AMPs including defensins, protease inhibitor, lectins, thionin-like peptides, vicilin-like peptides, and snaking were isolated from plants of the Solanaceae and were involved in their defense mechanism. These peptides exhibited significant antibacterial, antifungal and antiviral activity against organisms for both plant and human host. Brugmansia, Capsicum, Datura, Nicotiana, Salpichora, Solanum, Petunia, and Withania are the most commonly studied genera for AMPs. Among these genera, Capsicum and the Solanum ranked top according to the total number of studies (35%-38% studies) for different AMPs. The mechanisms of action of the reported AMPs from Solanaceae was not any new rather similar to other reported AMPs including alteration of membrane potential and permeability, membrane pore formation, and cell aggregation. Whereas, induction of cell membrane permiabilization, inhibition of germination and alteration of hyphal growth were reported as mechanisms of antifungal activity. Plants of the Solanaceae have been used traditionally as antimicrobial, insecticidal, and antiinfectious agents, and as poisons. The reported AMPs from the Solanaceae are the products of chemical shields to protect plants from microorganisms and pests which unfold an obvious link with their traditional medicinal use. In summary, it is evident that AMPs from this family possess considerable antimicrobial activity against a wide range of bacterial and fungal pathogens and can be regarded as a potential source for lead molecules to develop new antimicrobial agents.
  •  
2.
  • Khalifa, Shaden A. M., et al. (author)
  • Bee Pollen : Current Status and Therapeutic Potential
  • 2021
  • In: Nutrients. - : MDPI AG. - 2072-6643. ; 13:6
  • Research review (peer-reviewed)abstract
    • Bee pollen is a combination of plant pollen and honeybee secretions and nectar. The Bible and ancient Egyptian texts are documented proof of its use in public health. It is considered a gold mine of nutrition due to its active components that have significant health and medicinal properties. Bee pollen contains bioactive compounds including proteins, amino acids, lipids, carbohydrates, minerals, vitamins, and polyphenols. The vital components of bee pollen enhance different bodily functions and offer protection against many diseases. It is generally marketed as a functional food with affordable and inexpensive prices with promising future industrial potentials. This review highlights the dietary properties of bee pollen and its influence on human health, and its applications in the food industry.
  •  
3.
  • Khalifa, Shaden A. M., et al. (author)
  • Frankincense of Boswellia sacra: Traditional and modern applied uses, pharmacological activities, and clinical trials
  • 2023
  • In: Industrial crops and products (Print). - : Elsevier. - 0926-6690 .- 1872-633X. ; 203
  • Journal article (peer-reviewed)abstract
    • Since Boswellia sacra (Burseraceae) was studied in the 19th century, it has been known for its economic and cultural values. It is cultivated mainly in the southwest regions of Oman and some regions of Yemen, and is a natural source of frankincense, "Luban" in Arabic, around the world. Frankincense, the aromatic resin of B. sacra, is used widely both for traditional purposes and for the treatment of various ailments; e.g., dental infections, tumors, dysentery, vomiting, and fevers. Recently, many reports provided evidence for the potential biological activities of B. sacra, its synonym Boswellia carteri, and their constituent chemical compounds. These activities include cytotoxic, anti-inflammatory, antimicrobial, anti-diabetes, immunomodulatory, and anticoagulant effects. B. sacra was also tested for effects against gastric, hepatic, neurological, and skin disorders in vitro and in vivo. Clinical trials revealed good effects against carcinomas and gliomas, as well as against bladder and brain tumors. Its uses as a plant-based agent in nanotechnology displayed promising results. More efforts should be directed to further investigate these safe, plant-based bio-preservatives, and best practices should be outlined to protect these trees from extinction.
  •  
4.
  • Nahar, Lutfun, et al. (author)
  • Ruta Essential Oils : Composition and Bioactivities
  • 2021
  • In: Molecules. - : MDPI AG. - 1431-5157 .- 1420-3049. ; 26:16
  • Research review (peer-reviewed)abstract
    • Ruta L. is a typical genus of the citrus family, Rutaceae Juss. and comprises ca. 40 different species, mainly distributed in the Mediterranean region. Ruta species have long been used in traditional medicines as an abortifacient and emmenagogue and for the treatment of lung diseases and microbial infections. The genus Ruta is rich in essential oils, which predominantly contain aliphatic ketones, e.g., 2-undecanone and 2-nonanone, but lack any significant amounts of terpenes. Three Ruta species, Ruta chalepensis L., Ruta graveolens L., and Ruta montana L., have been extensively studied for the composition of their essential oils and several bioactivities, revealing their potential medicinal and agrochemical applications. This review provides a systematic evaluation and critical appraisal of publications available in the literature on the composition and bioactivities of the essential oils obtained from Ruta species and includes a brief outlook of the potential applications of nanotechnology and chitosan-based products of Ruta essential oils.
  •  
5.
  •  
6.
  • Wu, Lipeng, et al. (author)
  • Therapeutic potential of phenylethanoid glycosides : A systematic review
  • 2020
  • In: Medicinal research reviews (Print). - : WILEY. - 0198-6325 .- 1098-1128. ; 40:6, s. 2605-2649
  • Research review (peer-reviewed)abstract
    • Phenylethanoid glycosides (PhGs) are generally water-soluble phenolic compounds that occur in many medicinal plants. Until June 2020, more than 572 PhGs have been isolated and identified. PhGs possess antibacterial, anticancer, antidiabetic, anti-inflammatory, antiobesity, antioxidant, antiviral, and neuroprotective properties. Despite these promising benefits, PhGs have failed to fulfill their therapeutic applications due to their poor bioavailability. The attempts to understand their metabolic pathways to improve their bioavailability are investigated. In this review article, we will first summarize the number of PhGs compounds which is not accurate in the literature. The latest information on the biological activities, structure-activity relationships, mechanisms, and especially the clinical applications of PhGs will be reviewed. The bioavailability of PhGs will be summarized and factors leading to the low bioavailability will be analyzed. Recent advances in methods such as bioenhancers and nanotechnology to improve the bioavailability of PhGs are also summarized. The existing scientific gaps of PhGs in knowledge are also discussed, highlighting research directions in the future.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view