SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Sayers A.) "

Search: WFRF:(Sayers A.)

  • Result 1-10 of 31
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Shrine, N, et al. (author)
  • Multi-ancestry genome-wide association analyses improve resolution of genes and pathways influencing lung function and chronic obstructive pulmonary disease risk
  • 2023
  • In: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 55:3, s. 410-
  • Journal article (peer-reviewed)abstract
    • Lung-function impairment underlies chronic obstructive pulmonary disease (COPD) and predicts mortality. In the largest multi-ancestry genome-wide association meta-analysis of lung function to date, comprising 580,869 participants, we identified 1,020 independent association signals implicating 559 genes supported by ≥2 criteria from a systematic variant-to-gene mapping framework. These genes were enriched in 29 pathways. Individual variants showed heterogeneity across ancestries, age and smoking groups, and collectively as a genetic risk score showed strong association with COPD across ancestry groups. We undertook phenome-wide association studies for selected associated variants as well as trait and pathway-specific genetic risk scores to infer possible consequences of intervening in pathways underlying lung function. We highlight new putative causal variants, genes, proteins and pathways, including those targeted by existing drugs. These findings bring us closer to understanding the mechanisms underlying lung function and COPD, and should inform functional genomics experiments and potentially future COPD therapies.
  •  
3.
  • Jones, Gregory T., et al. (author)
  • Meta-Analysis of Genome-Wide Association Studies for Abdominal Aortic Aneurysm Identifies Four New Disease-Specific Risk Loci
  • 2017
  • In: Circulation Research. - 0009-7330 .- 1524-4571. ; 120:2, s. 341-
  • Journal article (peer-reviewed)abstract
    • Rationale: Abdominal aortic aneurysm (AAA) is a complex disease with both genetic and environmental risk factors. Together, 6 previously identified risk loci only explain a small proportion of the heritability of AAA. Objective: To identify additional AAA risk loci using data from all available genome-wide association studies. Methods and Results: Through a meta-analysis of 6 genome-wide association study data sets and a validation study totaling 10 204 cases and 107 766 controls, we identified 4 new AAA risk loci: 1q32.3 (SMYD2), 13q12.11 (LINC00540), 20q13.12 (near PCIF1/MMP9/ZNF335), and 21q22.2 (ERG). In various database searches, we observed no new associations between the lead AAA single nucleotide polymorphisms and coronary artery disease, blood pressure, lipids, or diabetes mellitus. Network analyses identified ERG, IL6R, and LDLR as modifiers of MMP9, with a direct interaction between ERG and MMP9. Conclusions: The 4 new risk loci for AAA seem to be specific for AAA compared with other cardiovascular diseases and related traits suggesting that traditional cardiovascular risk factor management may only have limited value in preventing the progression of aneurysmal disease.
  •  
4.
  •  
5.
  • Zheng, Hou-Feng, et al. (author)
  • Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture
  • 2015
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 526:7571, s. 112-
  • Journal article (peer-reviewed)abstract
    • The extent to which low-frequency (minor allele frequency (MAF) between 1-5%) and rare (MAF <= 1%) variants contribute to complex traits and disease in the general population is mainly unknown. Bone mineral density (BMD) is highly heritable, a major predictor of osteoporotic fractures, and has been previously associated with common genetic variants(1-8), as well as rare, population specific, coding variants(9). Here we identify novel non-coding genetic variants with large effects on BMD (n(total) = 53,236) and fracture (n(total) = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K (ref. 10); a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size fourfold larger than the mean of previously reported common variants for lumbar spine BMD8 (rs11692564(T), MAF51.6%, replication effect size510.20 s.d., P-meta = 2 x 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; P = 2 x 10(-11); ncases = 98,742 and ncontrols = 409,511). Using an En1cre/flox mouse model, we observed that conditional loss of En1 results in low bone mass, probably as a consequence of high bone turnover. We also identified a novel low frequency non-coding variant with large effects on BMD near WNT16 (rs148771817(T), MAF = 1.2%, replication effect size +10.41 s.d., P-meta = 1 x 10(-11)). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.
  •  
6.
  • Shrine, Nick, et al. (author)
  • New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries
  • 2019
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 51:3, s. 481-493
  • Journal article (peer-reviewed)abstract
    • Reduced lung function predicts mortality and is key to the diagnosis of chronic obstructive pulmonary disease (COPD). In a genome-wide association study in 400,102 individuals of European ancestry, we define 279 lung function signals, 139 of which are new. In combination, these variants strongly predict COPD in independent populations. Furthermore, the combined effect of these variants showed generalizability across smokers and never smokers, and across ancestral groups. We highlight biological pathways, known and potential drug targets for COPD and, in phenome-wide association studies, autoimmune-related and other pleiotropic effects of lung function-associated variants. This new genetic evidence has potential to improve future preventive and therapeutic strategies for COPD.
  •  
7.
  • Wain, Louise V, et al. (author)
  • Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets.
  • 2017
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 49:3, s. 416-425
  • Journal article (peer-reviewed)abstract
    • Chronic obstructive pulmonary disease (COPD) is characterized by reduced lung function and is the third leading cause of death globally. Through genome-wide association discovery in 48,943 individuals, selected from extremes of the lung function distribution in UK Biobank, and follow-up in 95,375 individuals, we increased the yield of independent signals for lung function from 54 to 97. A genetic risk score was associated with COPD susceptibility (odds ratio per 1 s.d. of the risk score (∼6 alleles) (95% confidence interval) = 1.24 (1.20-1.27), P = 5.05 × 10(-49)), and we observed a 3.7-fold difference in COPD risk between individuals in the highest and lowest genetic risk score deciles in UK Biobank. The 97 signals show enrichment in genes for development, elastic fibers and epigenetic regulation pathways. We highlight targets for drugs and compounds in development for COPD and asthma (genes in the inositol phosphate metabolism pathway and CHRM3) and describe targets for potential drug repositioning from other clinical indications.
  •  
8.
  • Artigas Soler, María, et al. (author)
  • Genome-wide association and large-scale follow up identifies 16 new loci influencing lung function.
  • 2011
  • In: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 43:11, s. 1082-90
  • Journal article (peer-reviewed)abstract
    • Pulmonary function measures reflect respiratory health and are used in the diagnosis of chronic obstructive pulmonary disease. We tested genome-wide association with forced expiratory volume in 1 second and the ratio of forced expiratory volume in 1 second to forced vital capacity in 48,201 individuals of European ancestry with follow up of the top associations in up to an additional 46,411 individuals. We identified new regions showing association (combined P < 5 × 10(-8)) with pulmonary function in or near MFAP2, TGFB2, HDAC4, RARB, MECOM (also known as EVI1), SPATA9, ARMC2, NCR3, ZKSCAN3, CDC123, C10orf11, LRP1, CCDC38, MMP15, CFDP1 and KCNE2. Identification of these 16 new loci may provide insight into the molecular mechanisms regulating pulmonary function and into molecular targets for future therapy to alleviate reduced lung function.
  •  
9.
  •  
10.
  • Loth, Daan W, et al. (author)
  • Genome-wide association analysis identifies six new loci associated with forced vital capacity
  • 2014
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 46, s. 669-677
  • Journal article (peer-reviewed)abstract
    • Forced vital capacity (FVC), a spirometric measure of pulmonary function, reflects lung volume and is used to diagnose and monitor lung diseases. We performed genome-wide association study meta-analysis of FVC in 52,253 individuals from 26 studies and followed up the top associations in 32,917 additional individuals of European ancestry. We found six new regions associated at genome-wide significance (P < 5 × 10(-8)) with FVC in or near EFEMP1, BMP6, MIR129-2-HSD17B12, PRDM11, WWOX and KCNJ2. Two loci previously associated with spirometric measures (GSTCD and PTCH1) were related to FVC. Newly implicated regions were followed up in samples from African-American, Korean, Chinese and Hispanic individuals. We detected transcripts for all six newly implicated genes in human lung tissue. The new loci may inform mechanisms involved in lung development and the pathogenesis of restrictive lung disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 31
Type of publication
journal article (30)
book chapter (1)
Type of content
peer-reviewed (28)
other academic/artistic (3)
Author/Editor
Surakka, Ida (6)
Kähönen, Mika (6)
Karrasch, Stefan (6)
Schulz, Holger (6)
Rudan, Igor (5)
Tobin, MD (5)
show more...
Strachan, David P (5)
Wareham, Nicholas J. (5)
Wilson, James F. (5)
Rolfson, Ola, 1973 (4)
Lind, Lars (4)
Imboden, Medea (4)
Melen, E (4)
Shrine, N (4)
Deloukas, P. (4)
Ripatti, Samuli (4)
Albrecht, Eva (4)
Gieger, Christian (4)
Jarvelin, Marjo-Riit ... (4)
Heliövaara, Markku (4)
Zeggini, E (4)
Beilby, J (4)
Deary, Ian J (4)
Mahajan, A. (3)
Rantanen, Taina (3)
Smith, A (3)
Vandenput, Liesbeth, ... (3)
Heinrich, Joachim (3)
Probst-Hensch, Nicol ... (3)
Overgaard, S. (3)
Cooper, Cyrus (3)
Campbell, Harry (3)
Ohlsson, Claes, 1965 (3)
Enroth, Stefan (3)
Johansson, Åsa (3)
Lehtimaki, T. (3)
Thorleifsson, Gudmar (3)
Stefansson, Kari (3)
Nyberg, Fredrik, 196 ... (3)
Kaprio, Jaakko (3)
Olin, Anna-Carin, 19 ... (3)
Barroso, Ines (3)
Gyllensten, Ulf (3)
Wilson, JF (3)
Lind, L (3)
Gieger, C (3)
Flexeder, C (3)
Jarvelin, MR (3)
Ramasamy, Adaikalava ... (3)
Wright, Alan F. (3)
show less...
University
University of Gothenburg (12)
Karolinska Institutet (12)
Uppsala University (11)
Lund University (5)
Umeå University (4)
Mälardalen University (1)
show more...
Chalmers University of Technology (1)
Linnaeus University (1)
show less...
Language
English (31)
Research subject (UKÄ/SCB)
Medical and Health Sciences (16)
Natural sciences (5)
Engineering and Technology (1)
Social Sciences (1)
Humanities (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view