SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Scaccabarozzi Alberto D.) "

Sökning: WFRF:(Scaccabarozzi Alberto D.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Marina, Sara, et al. (författare)
  • Polymorphism in Non-Fullerene Acceptors Based on Indacenodithienothiophene
  • 2021
  • Ingår i: Advanced Functional Materials. - : Wiley. - 1616-3028 .- 1616-301X. ; 31:29
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic solar cells incorporating non-fullerene acceptors (NFAs) have reached remarkable power conversion efficiencies of over 18%. Unlike fullerene derivatives, NFAs tend to crystallize from solutions, resulting in bulk heterojunctions that include a crystalline acceptor phase. This must be considered in any morphology-function models. Here, it is confirmed that high-performing solution-processed indacenodithienothiophene-based NFAs, i.e., ITIC and its derivatives ITIC-M, ITIC-2F, and ITIC-Th, exhibit at least two crystalline forms. In addition to highly ordered polymorphs that form at high temperatures, NFAs arrange into a low-temperature metastable phase that is readily promoted via solution processing and leads to the highest device efficiencies. Intriguingly, the low-temperature forms seem to feature a continuous network that favors charge transport despite of a poorly order along the pi-pi stacking direction. As the optical absorption of the structurally more disordered low-temperature phase can surpass that of the more ordered polymorphs while displaying comparable-or even higher-charge transport properties, it is argued that such a packing structure is an important feature for reaching highest device efficiencies, thus, providing guidelines for future materials design and crystal engineering activities.
  •  
2.
  • Scaccabarozzi, Alberto D., et al. (författare)
  • Doping Approaches for Organic Semiconductors
  • 2022
  • Ingår i: Chemical Reviews. - : American Chemical Society (ACS). - 0009-2665 .- 1520-6890. ; 122:4, s. 4420-4492
  • Forskningsöversikt (refereegranskat)abstract
    • Electronic doping in organic materials has remained an elusive concept for several decades. It drew considerable attention in the early days in the quest for organic materials with high electrical conductivity, paving the way for the pioneering work on pristine organic semiconductors (OSCs) and their eventual use in a plethora of applications. Despite this early trend, however, recent strides in the field of organic electronics have been made hand in hand with the development and use of dopants to the point that are now ubiquitous. Here, we give an overview of all important advances in the area of doping of organic semiconductors and their applications. We first review the relevant literature with particular focus on the physical processes involved, discussing established mechanisms but also newly proposed theories. We then continue with a comprehensive summary of the most widely studied dopants to date, placing particular emphasis on the chemical strategies toward the synthesis of molecules with improved functionality. The processing routes toward doped organic films and the important doping-processing-nanostructure relationships, are also discussed. We conclude the review by highlighting how doping can enhance the operating characteristics of various organic devices.
  •  
3.
  • Adamczak, Desiree, et al. (författare)
  • Influence of synthetic pathway, molecular weight and side chains on properties of indacenodithiophene-benzothiadiazole copolymers made by direct arylation polycondensation
  • 2021
  • Ingår i: Journal of Materials Chemistry C. - : Royal Society of Chemistry (RSC). - 2050-7534 .- 2050-7526. ; 9:13, s. 4597-4606
  • Tidskriftsartikel (refereegranskat)abstract
    • Atom-economic protocols for the synthesis of poly(indacenodithiophene-alt-benzothiadiazole) (PIDTBT) are presented in which all C-C coupling steps are achieved by direct arylation. Using two different synthetic pathways, PIDTBT copolymers with different side chains (hexylphenyl, octylphenyl, dodecyl, methyl/2-octyldodecylphenyl, 2-octyldodecylphenyl/2-octyldodecylphenyl) and molecular weight (MW) are prepared. Route A makes use of direct arylation polycondensation (DAP) of indacenodithiophene (IDT) and 4,7-dibromo-2,1,3-benzothiadiazole (BTBr2) leading to PIDTBT in high yields, with adjustable MW and without indications for structural defects. Route B starts from a polyketone precursor also prepared by DAP following cyclization. While route B allows introduction of asymmetric side chains at the IDT unit, polymer analogous cyclization gives rise to defect formation. The absorption coefficient of PIDTBT with alkylphenyl side chains made by route A increases with MW. Field-effect hole mobilities around similar to 10(-2) cm(2) V-1 s(-1) are molecular weight-independent, which is ascribed to a largely amorphous thin film morphology. PIDTBT with linear dodecyl side (C12) chains exhibits a bathochromic shift (20 nm), in agreement with theory, and more pronounced vibronic contributions to absorption spectra. In comparison to alkylphenyl side chains, C12 side chains allow for increased order in thin films, a weak melting endotherm and lower energetic disorder, which altogether explain substantially higher field-effect hole mobilities of similar to 10(-1) cm(2) V-1 s(-1).
  •  
4.
  • Perinot, Andrea, et al. (författare)
  • Solution-Processed Polymer Dielectric Interlayer for Low-Voltage, Unipolar n-Type Organic Field-Effect Transistors
  • 2023
  • Ingår i: ACS Applied Materials and Interfaces. - : AMER CHEMICAL SOC. - 1944-8244 .- 1944-8252. ; 15:48, s. 56095-56105
  • Tidskriftsartikel (refereegranskat)abstract
    • The integration of organic electronic circuits into real-life applications compels the fulfillment of a range of requirements, among which the ideal operation at a low voltage with reduced power consumption is paramount. Moreover, these performance factors should be achieved via solution-based fabrication schemes in order to comply with the promise of cost- and energy-efficient manufacturing offered by an organic, printed electronic technology. Here, we propose a solution-based route for the fabrication of low-voltage organic transistors, encompassing ideal device operation at voltages below 5 V and exhibiting n-type unipolarization. This process is widely applicable to a variety of semiconducting and dielectric materials. We achieved this through the use of a photo-cross-linked, low-k dielectric interlayer, which is used to fabricate multilayer dielectric stacks with areal capacitances of up to 40 nF/cm(2) and leakage currents below 1 nA/cm(2). Because of the chosen azide-based cross-linker, the dielectric promotes n-type unipolarization of the transistors and demonstrated to be compatible with different classes of semiconductors, from conjugated polymers to carbon nanotubes and low-temperature metal oxides. Our results demonstrate a general applicability of our unipolarizing dielectric, facilitating the implementation of complementary circuitry of emerging technologies with reduced power consumption.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy