SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Schinke Carolina) "

Search: WFRF:(Schinke Carolina)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Rasche, Leo, et al. (author)
  • Low expression of hexokinase-2 is associated with false-negative FDG–positron emission tomography in multiple myeloma
  • 2017
  • In: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 130:1, s. 30-34
  • Journal article (peer-reviewed)abstract
    • 18F-Fluorodeoxyglucose (FDG)–positron emission tomography (PET) and diffusion-weighted magnetic resonance imaging with background signal suppression (DWIBS) are 2 powerful functional imaging modalities in the evaluation of malignant plasma cell (PC) disease multiple myeloma (MM). Preliminary observations have suggested that MM patients with extensive disease according to DWIBS may be reported as being disease-free on FDG-PET (“PET false-negative”). The aim of this study was to describe the proportion of PET false-negativity in a representative set of 227 newly diagnosed MM patients with simultaneous assessment of FDG-PET and DWIBS, and to identify tumor-intrinsic features associated with this pattern. We found the incidence of PET false-negativity to be 11%. Neither tumor load–associated parameters, such as degree of bone marrow PC infiltration, nor the PC proliferation rate were associated with this subset. However, the gene coding for hexokinase-2, which catalyzes the first step of glycolysis, was significantly lower expressed in PET false-negative cases (5.3-fold change, P < .001) which provides a mechanistic explanation for this feature. In conclusion, we demonstrate a relevant number of patients with FDG-PET false-negative MM and a strong association between hexokinase-2 expression and this negativity: a finding which may also be relevant for clinical imaging of other hematological cancers.
  •  
2.
  • Went, Molly, et al. (author)
  • Deciphering the genetics and mechanisms of predisposition to multiple myeloma
  • 2024
  • In: Nature Communications. - 2041-1723. ; 15:1
  • Journal article (peer-reviewed)abstract
    • Multiple myeloma (MM) is an incurable malignancy of plasma cells. Epidemiological studies indicate a substantial heritable component, but the underlying mechanisms remain unclear. Here, in a genome-wide association study totaling 10,906 cases and 366,221 controls, we identify 35 MM risk loci, 12 of which are novel. Through functional fine-mapping and Mendelian randomization, we uncover two causal mechanisms for inherited MM risk: longer telomeres; and elevated levels of B-cell maturation antigen (BCMA) and interleukin-5 receptor alpha (IL5RA) in plasma. The largest increase in BCMA and IL5RA levels is mediated by the risk variant rs34562254-A at TNFRSF13B. While individuals with loss-of-function variants in TNFRSF13B develop B-cell immunodeficiency, rs34562254-A exerts a gain-of-function effect, increasing MM risk through amplified B-cell responses. Our results represent an analysis of genetic MM predisposition, highlighting causal mechanisms contributing to MM development.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view