SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Schleifer KH) "

Search: WFRF:(Schleifer KH)

  • Result 1-1 of 1
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Lee, N, et al. (author)
  • Long-term population dynamics and in situ physiology in activated sludge systems with enhanced biological phosphorus removal operated with and without nitrogen removal
  • 2003
  • In: Systematic and Applied Microbiology. - : Elsevier BV. - 0723-2020. ; 26:2, s. 211-227
  • Journal article (peer-reviewed)abstract
    • Quantitative fluorescence in situ hybridization (FISH) and the combination of FISH with microautoradiography (MAR) were used in order to study the long-term population dynamics (2.5 years) and the in situ physiology in two parallel activated sludge pilot systems with enhanced biological phosphorus removal (EBPR). The two systems received the same influent wastewater, but were differently operated (with and without nitrogen removal, respectively). Both systems showed a significant P removal that increased when different substrates (phosphorus (P), acetate and glucose, respectively) were added to the influent wastewater. Rhodocyclus-related bacteria were present in both systems in significant numbers (ranging from 4 to 28%) throughout the whole period. This supports the hypothesis that these bacteria occur in significant numbers in different types of well-operating EBPR activated sludge processes. However, we observed a lower correlation (<0.5) for the amount of Rhodocyclus-related bacteria to the P content in activated sludge than previous studies (>0.9). The Actinobacteria were the only additional group of bacteria which showed a similar degree of correlation to the P content in activated sludge as the Rhodocyclus-related bacteria - but only for the system without nitrogen removal. Significant amounts (less than or equal to12%) of glycogen-accumulating bacteria (GAOs) were detected in the system with nitrogen removal (but not in the other system), but had no, in contrast to previous observations, apparent negative effect on the overall EBPR performance. FISH-MAR indicated that a significant part of the Betaproteobacteria (part of them identified as Rhodocyclus-related bacteria) as well as the Actinobacteria were able to take up P-33(i), [H-3]-acetate and [H-3]-glucose under anaerobic-aerobic conditions. The contribution of anoxic P-33(i) uptake under alternating anaerobic-anoxic conditions was significantly lower. Interestingly, not all Rhodocyclus-related bacteria showed uptake of these three radioactive substrates. This may be due to differences in metabolic state, physiological potential or genotype, not detectable by the present probe set for Rhodocyclus-related bacteria. Comparison of the P-33(i), [H-3]-acetate and [H-3]-glucose uptake by activated sludge after different fixation and incubation procedures showed that a part of the observed P-33(i), uptake may have been caused by a combination of a biological and chemical or biologically induced chemical P adsorption.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-1 of 1
Type of publication
journal article (1)
Type of content
peer-reviewed (1)
Author/Editor
Lee, N (1)
Henze, M (1)
la Cour Jansen, Jes (1)
Aspegren, H (1)
Nielsen, PH (1)
Schleifer, KH (1)
University
Lund University (1)
Language
English (1)
Research subject (UKÄ/SCB)
Engineering and Technology (1)
Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view