SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Schwartz Russell) "

Search: WFRF:(Schwartz Russell)

  • Result 1-10 of 30
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Chen, L. -J, et al. (author)
  • Electron Bulk Acceleration and Thermalization at Earth's Quasiperpendicular Bow Shock
  • 2018
  • In: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 120:22
  • Journal article (peer-reviewed)abstract
    • Electron heating at Earth's quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. The relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating. 
  •  
3.
  • Clark, Andrew G., et al. (author)
  • Evolution of genes and genomes on the Drosophila phylogeny
  • 2007
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 450:7167, s. 203-218
  • Journal article (peer-reviewed)abstract
    • Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species.
  •  
4.
  • Eastwood, J. P., et al. (author)
  • Guide Field Reconnection : Exhaust Structure and Heating
  • 2018
  • In: Geophysical Research Letters. - : AMER GEOPHYSICAL UNION. - 0094-8276 .- 1944-8007. ; 45:10, s. 4569-4577
  • Journal article (peer-reviewed)abstract
    • Magnetospheric Multiscale observations are used to probe the structure and temperature profile of a guide field reconnection exhaust similar to 100 ion inertial lengths downstream from the X-line in the Earth's magnetosheath. Asymmetric Hall electric and magnetic field signatures were detected, together with a density cavity confined near 1 edge of the exhaust and containing electron flow toward the X-line. Electron holes were also detected both on the cavity edge and at the Hall magnetic field reversal. Predominantly parallel ion and electron heating was observed in the main exhaust, but within the cavity, electron cooling and enhanced parallel ion heating were found. This is explained in terms of the parallel electric field, which inhibits electron mixing within the cavity on newly reconnected field lines but accelerates ions. Consequently, guide field reconnection causes inhomogeneous changes in ion and electron temperature across the exhaust.
  •  
5.
  • Ergun, R. E., et al. (author)
  • Drift waves, intense parallel electric fields, and turbulence associated with asymmetric magnetic reconnection at the magnetopause
  • 2017
  • In: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 44:7, s. 2978-2986
  • Journal article (peer-reviewed)abstract
    • Observations of magnetic reconnection at Earth's magnetopause often display asymmetric structures that are accompanied by strong magnetic field (B) fluctuations and large-amplitude parallel electric fields (E-||). The B turbulence is most intense at frequencies above the ion cyclotron frequency and below the lower hybrid frequency. The B fluctuations are consistent with a thin, oscillating current sheet that is corrugated along the electron flow direction (along the X line), which is a type of electromagnetic drift wave. Near the X line, electron flow is primarily due to a Hall electric field, which diverts ion flow in asymmetric reconnection and accompanies the instability. Importantly, the drift waves appear to drive strong parallel currents which, in turn, generate large-amplitude (similar to 100mV/m) E-|| in the form of nonlinear waves and structures. These observations suggest that turbulence may be common in asymmetric reconnection, penetrate into the electron diffusion region, and possibly influence the magnetic reconnection process.
  •  
6.
  • Ergun, R. E., et al. (author)
  • Magnetic Reconnection, Turbulence, and Particle Acceleration : Observations in the Earth's Magnetotail
  • 2018
  • In: Geophysical Research Letters. - : Blackwell Publishing Ltd. - 0094-8276 .- 1944-8007. ; 45:8, s. 3338-3347
  • Journal article (peer-reviewed)abstract
    • We report observations of turbulent dissipation and particle acceleration from large-amplitude electric fields (E) associated with strong magnetic field (B) fluctuations in the Earth's plasma sheet. The turbulence occurs in a region of depleted density with anti-earthward flows followed by earthward flows suggesting ongoing magnetic reconnection. In the turbulent region, ions and electrons have a significant increase in energy, occasionally >100 keV, and strong variation. There are numerous occurrences of |E| >100 mV/m including occurrences of large potentials (>1 kV) parallel to B and occurrences with extraordinarily large J · E (J is current density). In this event, we find that the perpendicular contribution of J · E with frequencies near or below the ion cyclotron frequency (fci) provide the majority net positive J · E. Large-amplitude parallel E events with frequencies above fci to several times the lower hybrid frequency provide significant dissipation and can result in energetic electron acceleration.
  •  
7.
  • Ergun, R. E., et al. (author)
  • Magnetospheric Multiscale observations of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the magnetopause
  • 2016
  • In: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:11, s. 5626-5634
  • Journal article (peer-reviewed)abstract
    • We report observations from the Magnetospheric Multiscale satellites of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the Earth's magnetopause. The observed waves have parallel electric fields (E-||) with amplitudes on the order of 100mV/m and display nonlinear characteristics that suggest a possible net E-||. These waves are observed within the ion diffusion region and adjacent to (within several electron skin depths) the electron diffusion region. They are in or near the magnetosphere side current layer. Simulation results support that the strong electrostatic linear and nonlinear wave activities appear to be driven by a two stream instability, which is a consequence of mixing cold (<10eV) plasma in the magnetosphere with warm (similar to 100eV) plasma from the magnetosheath on a freshly reconnected magnetic field line. The frequent observation of these waves suggests that cold plasma is often present near the magnetopause.
  •  
8.
  • Ergun, R. E., et al. (author)
  • Magnetospheric Multiscale Satellites Observations of Parallel Electric Fields Associated with Magnetic Reconnection
  • 2016
  • In: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 116:23
  • Journal article (peer-reviewed)abstract
    • We report observations from the Magnetospheric Multiscale satellites of parallel electric fields (E-vertical bar vertical bar) associated with magnetic reconnection in the subsolar region of the Earth's magnetopause. E-vertical bar vertical bar events near the electron diffusion region have amplitudes on the order of 100 mV/m, which are significantly larger than those predicted for an antiparallel reconnection electric field. This Letter addresses specific types of E-vertical bar vertical bar events, which appear as large-amplitude, near unipolar spikes that are associated with tangled, reconnected magnetic fields. These E-vertical bar vertical bar events are primarily in or near a current layer near the separatrix and are interpreted to be double layers that may be responsible for secondary reconnection in tangled magnetic fields or flux ropes. These results are telling of the three-dimensional nature of magnetopause reconnection and indicate that magnetopause reconnection may be often patchy and/or drive turbulence along the separatrix that results in flux ropes and/or tangled magnetic fields.
  •  
9.
  • Eriksson, S., et al. (author)
  • Magnetospheric Multiscale observations of magnetic reconnection associated with Kelvin-Helmholtz waves
  • 2016
  • In: Geophysical Research Letters. - : Blackwell Publishing. - 0094-8276 .- 1944-8007. ; 43:11, s. 5606-5615
  • Journal article (peer-reviewed)abstract
    • The four Magnetospheric Multiscale (MMS) spacecraft recorded the first direct evidence of reconnection exhausts associated with Kelvin-Helmholtz (KH) waves at the duskside magnetopause on 8 September 2015 which allows for local mass and energy transport across the flank magnetopause. Pressure anisotropy-weighted Walen analyses confirmed in-plane exhausts across 22 of 42 KH-related trailing magnetopause current sheets (CSs). Twenty-one jets were observed by all spacecraft, with small variations in ion velocity, along the same sunward or antisunward direction with nearly equal probability. One exhaust was only observed by the MMS-1,2 pair, while MMS-3,4 traversed a narrow CS (1.5 ion inertial length) in the vicinity of an electron diffusion region. The exhausts were locally 2-D planar in nature as MMS-1,2 observed almost identical signatures separated along the guide-field. Asymmetric magnetic and electric Hall fields are reported in agreement with a strong guide-field and a weak plasma density asymmetry across the magnetopause CS.
  •  
10.
  • Eriksson, S., et al. (author)
  • Magnetospheric Multiscale Observations of the Electron Diffusion Region of Large Guide Field Magnetic Reconnection
  • 2016
  • In: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 117:1
  • Journal article (peer-reviewed)abstract
    • We report observations from the Magnetospheric Multiscale (MMS) satellites of a large guide field magnetic reconnection event. The observations suggest that two of the four MMS spacecraft sampled the electron diffusion region, whereas the other two spacecraft detected the exhaust jet from the event. The guide magnetic field amplitude is approximately 4 times that of the reconnecting field. The event is accompanied by a significant parallel electric field (E-parallel to)that is larger than predicted by simulations. The high-speed (similar to 300 km/s) crossing of the electron diffusion region limited the data set to one complete electron distribution inside of the electron diffusion region, which shows significant parallel heating. The data suggest that E-parallel to is balanced by a combination of electron inertia and a parallel gradient of the gyrotropic electron pressure.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 30

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view