SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Senje L.) "

Search: WFRF:(Senje L.)

  • Result 1-10 of 11
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Desforges, F. G., et al. (author)
  • Analysis of Electron Injection in Laser Wakefield Acceleration Using Betatron Emission in Capillary Tubes
  • 2015
  • In: Laser Acceleration of Electrons, Protons, and Ions III; and Medical Applications of Laser-Generated Beams of Particles III. - : SPIE. - 1996-756X .- 0277-786X. ; 9514, s. 95140-95140
  • Conference paper (peer-reviewed)abstract
    • The dynamics of ionization-induced electron injection in the high density (similar to 1.2 x 10(19)cm(-3)) regime of Laser Wakefield Acceleration (LWFA) was investigated by analyzing betatron X-ray emission inside dielectric capillary tubes. A comparative study of the electron and betatron X-ray properties was performed for both self-injection and ionization-induced injection. Direct experimental evidence of early onset of ionization-induced injection into the plasma wave was obtained by mapping the X-ray emission zone inside the plasma. Particle-In-Cell (PIC) simulations showed that the early onset of ionization-induced injection, due to its lower trapping threshold, suppresses self-injection of electrons. An increase of X-ray fluence by at least a factor of two was observed in the case of ionization-induced injection due to an increased trapped charge compared to self-injection mechanism.
  •  
2.
  • Desforges, F. G., et al. (author)
  • Dynamics of ionization-induced electron injection in the high density regime of laser wakefield acceleration
  • 2014
  • In: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 21:12
  • Journal article (peer-reviewed)abstract
    • The dynamics of ionization-induced electron injection in high density (similar to 1.2 x 10(19) cm(-3)) regime of laser wakefield acceleration is investigated by analyzing the betatron X-ray emission. In such high density operation, the laser normalized vector potential exceeds the injection-thresholds of both ionization-injection and self-injection due to self-focusing. In this regime, direct experimental evidence of early on-set of ionization-induced injection into the plasma wave is given by mapping the X-ray emission zone inside the plasma. Particle-In-Cell simulations show that this early on-set of ionization-induced injection, due to its lower trapping threshold, suppresses the trapping of self-injected electrons. A comparative study of the electron and X-ray properties is performed for both self-injection and ionization-induced injection. An increase of X-ray fluence by at least a factor of two is observed in the case of ionization-induced injection due to increased trapped charge compared to self-injection mechanism. (C) 2014 AIP Publishing LLC.
  •  
3.
  • Dromey, B, et al. (author)
  • Picosecond metrology of laser-driven proton bursts.
  • 2016
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Journal article (peer-reviewed)abstract
    • Tracking primary radiation-induced processes in matter requires ultrafast sources and high precision timing. While compact laser-driven ion accelerators are seeding the development of novel high instantaneous flux applications, combining the ultrashort ion and laser pulse durations with their inherent synchronicity to trace the real-time evolution of initial damage events has yet to be realized. Here we report on the absolute measurement of proton bursts as short as 3.5±0.7 ps from laser solid target interactions for this purpose. Our results verify that laser-driven ion acceleration can deliver interaction times over a factor of hundred shorter than those of state-of-the-art accelerators optimized for high instantaneous flux. Furthermore, these observations draw ion interaction physics into the field of ultrafast science, opening the opportunity for quantitative comparison with both numerical modelling and the adjacent fields of ultrafast electron and photon interactions in matter.
  •  
4.
  • Ferri, Julien, 1990, et al. (author)
  • Proton acceleration by a pair of successive ultraintense femtosecond laser pulses
  • 2018
  • In: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 25
  • Journal article (peer-reviewed)abstract
    • © 2018 Author(s). We investigate the target normal sheath acceleration of protons in thin aluminum targets irradiated at a relativistic intensity by two time-separated ultrashort (35 fs) laser pulses. When the full-energy laser pulse is temporally split into two identical half-energy pulses, and using target thicknesses of 3 and 6 μm, we observe experimentally that the second half-pulse boosts the maximum energy and charge of the proton beam produced by the first half-pulse for time delays below ∼0.6-1 ps. Using two-dimensional particle-in-cell simulations, we examine the variation of the proton energy spectra with respect to the time-delay between the two pulses. We demonstrate that the expansion of the target front surface caused by the first pulse significantly enhances the hot-electron generation by the second pulse arriving after a few hundreds of fs time delay. This enhancement, however, does not suffice to further accelerate the fastest protons driven by the first pulse once three-dimensional quenching effects have set in. This implies a limit to the maximum time delay that leads to proton energy enhancement, which we theoretically determine.
  •  
5.
  • Taylor, M., et al. (author)
  • Probing ultrafast proton induced dynamics in transparent dielectrics
  • 2018
  • In: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 0741-3335 .- 1361-6587. ; 60:5
  • Journal article (peer-reviewed)abstract
    • A scheme has been developed permitting the spatial and temporal characterisation of ultrafast dynamics induced by laser driven proton bursts in transparent dielectrics. Advantage is taken of the high degree of synchronicity between the proton bursts generated during laser-foil target interactions and the probing laser to provide the basis for streaking of the dynamics. Relaxation times of electrons (<10-12 s) are measured following swift excitation across the optical band gap for various glass samples. A temporal resolution of <500 fs is achieved demonstrating that these ultrafast dynamics can be characterized on a single-shot basis.
  •  
6.
  • Aurand, B., et al. (author)
  • Manipulation of the spatial distribution of laser-accelerated proton beams by varying the laser intensity distribution
  • 2016
  • In: Physics of Plasmas. - : AIP Publishing. - 1089-7674 .- 1070-664X. ; 23:2
  • Journal article (peer-reviewed)abstract
    • We report on a study of the spatial profile of proton beams produced through target normal sheath acceleration using flat target foils and changing the laser intensity distribution on the target front surface. This is done by either defocusing a single laser pulse or by using a split-pulse setup and irradiating the target with two identical laser pulses with variable spatial separation. The resulting proton beam profile and the energy spectrum are recorded as functions of the focal spot size of the single laser pulse and of the separation between the two pulses. A shaping of the resulting proton beam profile, related to both an increase in flux of low-energy protons in the target normal direction and a decrease in their divergence, in one or two dimensions, is observed. The results are explained by simple modelling of rear surface sheath field expansion, ionization, and projection of the resulting proton beam.
  •  
7.
  • Desforges, F. G., et al. (author)
  • Reproducibility of electron beams from laser wakefield acceleration in capillary tubes
  • 2014
  • In: Nuclear Instruments & Methods in Physics Research. Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment. - : Elsevier BV. - 0167-5087 .- 0168-9002. ; 740, s. 54-59
  • Journal article (peer-reviewed)abstract
    • The stability of accelerated electron beams produced by self injection of plasma electrons into the wakefield driven by a laser pulse guided inside capillary tubes is analyzed statistically in relation to laser and plasma parameters, and compared to results obtained in a gas jet. The analysis shows that reproducible electron beams are achieved with a charge of 66 pC +/- 11%, a FWHM beam divergence of 9 mrad +/- 14%, a maximum energy of 120 MeV +/- 10% and pointing fluctuations of 2.3 mrad using 10 mm long, 178 mu m diameter capillary tubes at an electron density of (10.0 +/- 1.5) x 10(18) cm(-3). Active stabilization of the laser pointing was used and laser parameters were recorded on each shot. Although the shot-to-shot laser energy fluctuations can account for a fraction of the electrons fluctuations, gas density fluctuations are suspected to be a more important source of instability. (C) 2013 Elsevier B.V. All rights reserved.
  •  
8.
  • Hansson, Martin, et al. (author)
  • Enhanced stability of laser wakefield acceleration using dielectric capillary tubes
  • 2014
  • In: Physical Review Special Topics. Accelerators and Beams. - 1098-4402. ; 17:3
  • Journal article (peer-reviewed)abstract
    • The stability of beams of laser wakefield accelerated electrons in dielectric capillary tubes is experimentally investigated. These beams are found to be more stable in charge and pointing than the corresponding beams of electrons accelerated in a gas jet. Electron beams with an average charge of 43 pC and a standard deviation of 14% are generated. The fluctuations in charge are partly correlated to fluctuations in laser pulse energy. The pointing scatter of the electron beams is measured to be as low as 0.8 mrad (rms). High laser beam pointing stability improved the stability of the electron beams.
  •  
9.
  • Jung, D, et al. (author)
  • On the analysis of inhomogeneous magnetic field spectrometer for laser-driven ion acceleration.
  • 2015
  • In: Review of Scientific Instruments. - : AIP Publishing. - 1089-7623 .- 0034-6748. ; 86:3
  • Journal article (peer-reviewed)abstract
    • We present a detailed study of the use of a non-parallel, inhomogeneous magnetic field spectrometer for the investigation of laser-accelerated ion beams. Employing a wedged yoke design, we demonstrate the feasibility of an in-situ self-calibration technique of the non-uniform magnetic field and show that high-precision measurements of ion energies are possible in a wide-angle configuration. We also discuss the implications of a stacked detector system for unambiguous identification of different ion species present in the ion beam and explore the feasibility of detection of high energy particles beyond 100 MeV/amu in radiation harsh environments.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view