SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Shriner Susan A.) "

Search: WFRF:(Shriner Susan A.)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Mahajan, Anubha, et al. (author)
  • Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation
  • 2022
  • In: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 54:5, s. 560-572
  • Journal article (peer-reviewed)abstract
    • We assembled an ancestrally diverse collection of genome-wide association studies (GWAS) of type 2 diabetes (T2D) in 180,834 affected individuals and 1,159,055 controls (48.9% non-European descent) through the Diabetes Meta-Analysis of Trans-Ethnic association studies (DIAMANTE) Consortium. Multi-ancestry GWAS meta-analysis identified 237 loci attaining stringent genome-wide significance (P < 5 x 10(-9)), which were delineated to 338 distinct association signals. Fine-mapping of these signals was enhanced by the increased sample size and expanded population diversity of the multi-ancestry meta-analysis, which localized 54.4% of T2D associations to a single variant with >50% posterior probability. This improved fine-mapping enabled systematic assessment of candidate causal genes and molecular mechanisms through which T2D associations are mediated, laying the foundations for functional investigations. Multi-ancestry genetic risk scores enhanced transferability of T2D prediction across diverse populations. Our study provides a step toward more effective clinical translation of T2D GWAS to improve global health for all, irrespective of genetic background. Genome-wide association and fine-mapping analyses in ancestrally diverse populations implicate candidate causal genes and mechanisms underlying type 2 diabetes. Trans-ancestry genetic risk scores enhance transferability across populations.
  •  
2.
  • Chandler, Jeffrey C., et al. (author)
  • Validation of a screening method for the detection of colistin-resistant E. coli containing mcr-1 in feral swine feces
  • 2020
  • In: Journal of Microbiological Methods. - : ELSEVIER. - 0167-7012 .- 1872-8359. ; 172
  • Journal article (peer-reviewed)abstract
    • A method was developed and validated for the detection of colistin-resistant Escherichia coli containing mcr-1 in the feces of feral swine. Following optimization of an enrichment method using EC broth supplemented with colistin (1 mu g/mL) and vancomycin (8 mu g/mL), aliquots derived from 100 feral swine fecal samples were spiked with of one of five different mcr-1 positive E. coli strains (between 10(0) and 10(4) CFU/g), for a total of 1110 samples tested. Enrichments were then screened using a simple boil-prep and a previously developed real-time PCR assay for mcr-1 detection. The sensitivity of the method was determined in swine feces, with mcr-1 E. coli inocula of 0.1-9.99 CFU/g (n = 340), 10-49.99 CFU/g (n = 170), 50-99 CFU/g (n = 255), 100-149 CFU/g (n = 60), and 200-2200 CFU/g (n = 175), which were detected with 32%, 72%, 88%, 95%, and 98% accuracy, respectively. Uninoculated controls (n = 100) were negative for mcr-1 following enrichment.
  •  
3.
  • Franklin, Alan B., et al. (author)
  • Gulls as Sources of Environmental Contamination by Colistin-resistant Bacteria
  • 2020
  • In: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 10:1
  • Journal article (peer-reviewed)abstract
    • In 2015, the mcr-1 gene was discovered in Escherichia coli in domestic swine in China that conferred resistance to colistin, an antibiotic of last resort used in treating multi-drug resistant bacterial infections in humans. Since then, mcr-1 was found in other human and animal populations, including wild gulls. Because gulls could disseminate the mcr-1 gene, we conducted an experiment to assess whether gulls are readily colonized with mcr-1 positive E. coli, their shedding patterns, transmission among conspecifics, and environmental deposition. Shedding of mcr-1 E. coli by small gull flocks followed a lognormal curve and gulls shed one strain >10(1) log10 CFU/g in their feces for 16.4 days, which persisted in the environment for 29.3 days. Because gulls are mobile and can shed antimicrobial-resistant bacteria for extended periods, gulls may facilitate transmission of mcr-1 positive E. coli to humans and livestock through fecal contamination of water, public areas and agricultural operations.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view