SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Shurong Xie) "

Search: WFRF:(Shurong Xie)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Peng, Bo, et al. (author)
  • Geochemistry of major and trace elements and Pb-Sr isotopes of a weathering profile developed on the Lower Cambrian black shales in central Hunan, China
  • 2014
  • In: Applied Geochemistry. - : Elsevier BV. - 0883-2927 .- 1872-9134. ; 51, s. 191-203
  • Journal article (peer-reviewed)abstract
    • This paper reports a geochemical study on the major and trace elements and Pb-Sr isotopes of a weathering profile developed in the Lower Cambrian black shales in central Hunan (China). Six weathering horizons were identified and sampled vertically throughout the profile. The chemical composition of the profile consists of variable concentrations of the major elements Fe2O3, FeO, MnO, MgO, CaO, Na2O, and P2O5 and of less variable concentrations of SiO2, TiO2, Al2O3, and K2O. The chemical change caused by weathering is estimated by mass-balance calculations, and the results show that the element mobility is characterised by substantial loss of SiO2, FeO, CaO, K2O, Na2O, LOI, Cr, V, Ba, Cs, Rb, Sr, U, and Th, and moderate loss of Al2O3, MgO, Fe2O3, Ni, Cu, Pb, Tl, Sn, Sc, Ge and REE (Y). The high field strength elements TiO2, Sn, Sc, U, Ga, Ge, Zr, Hf, Nb, and Ta were immobile during weathering. The chemical changes and the Pb-Sr isotopic data suggest that four types of chemical reactions occurred: the oxidation of sulphide minerals (e.g., pyrite) and organic carbon (OS), the dissolution of less resistant clinochlore-Ia, calcite, and P-bearing minerals (DL), the dissolution of detrital albite and microcline (DA), and the transformation of clay (TC) minerals (e.g., muscovite and illite-smectite). These chemical reactions then led to two stages of geochemical processes, an early stage of chemical differentiation and a later stage of chemical homogenisation. The chemical differentiation dominated by the OS, DL, and DA reactions, led to the leaching of mobile elements (e.g., MgO, Na2O, K2O, P2O5, Sr, and REE) and the redistribution of some less mobile elements (e.g., SiO2 and Al2O3). In contrast, the chemical homogenisation, which was caused by TC reactions, led to the leaching of both mobile and less mobile elements from the system and ultimately transformed the weathered black shales into soil. Soils derived from black shales in South China might result from the above two geochemical processes. (C) 2014 Elsevier Ltd. All rights reserved.
  •  
2.
  • Xu, Jingzhe, et al. (author)
  • Geochemistry of soils derived from black shales in the Ganziping mine area, western Hunan, China
  • 2013
  • In: Environmental Earth Sciences. - : Springer Science and Business Media LLC. - 1866-6280 .- 1866-6299. ; 70:1, s. 175-190
  • Journal article (peer-reviewed)abstract
    • The geochemistry of major and trace elements (including heavy metals and rare earth elements) of the fresh and weathered black shales, and the soils derived from black shales in the Ganziping mine area in western Hunan province (China) were studied using the following techniques: X-ray fluorescence (XRF), inductively coupled plasma mass spectrometer (ICP-MS) and X-ray diffraction (XRD). The results show that the black-shale soils are significantly enriched with Al2O3 and Fe2O3, and depleted of mobile elements CaO, Na2O and K2O. The soils are also highly enriched with heavy metals U, V, Ni, Ba, Cu, Zn and Pb, that may cause potential heavy-metal contamination of the soils. Composition of the soils is homogeneous compared to the weathered black shales, for which the concentrations of major elements except CaO and Na2O, and trace elements except heavy metals (U, V, Ni, Ba, Cu, Zn and Pb) as well as the mobile Sr, show lower variations than in the weathered black shales. Ratios of Zr/Hf, Ta/Nb, Y/Ho, Nd/Sm, and Ti/(Ti + Zr), of the soils are also less variable, with values constantly similar to that of the fresh and weathered black shales correspondingly. Thus, components of the soils are believed to be contributed from the parent black shales through weathering and pedogenesis. It is concluded that the soils were formed by at least two stages of geochemical processes: the early stage of chemical differentiation and the later stage of chemical homogenization. The chemical differentiation that was taken during black-shale weathering might have caused the depletion of CaO and Na2O, and the enrichment of Al2O3 and Fe2O3; while the chemical homogenization that was taken during pedogenesis led to the depletion of SiO2 and K2O, and to the further enrichment of Al2O3 and Fe2O3. The heavy-metal enrichment (contamination) of the soils was then genetically related to the enrichment of Al2O3 and Fe2O3 in the soils.
  •  
3.
  • Yu, Changxun, 1983-, et al. (author)
  • Biogeochemical cycling of iron (hydr-)oxides and its impact on organic carbon turnover in coastal wetlands : A global synthesis and perspective
  • 2021
  • In: Earth-Science Reviews. - : Elsevier. - 0012-8252 .- 1872-6828. ; 218
  • Research review (peer-reviewed)abstract
    • Coastal wetlands host large and dynamic reservoirs of organic carbon (C) and are also biogeochemical hotspots for a wide range of Fe (hydr-)oxides with different chemical reactivities, properties, and functions. The cycling of these iron (hydr-)oxides is closely coupled to that of organic C, which in turn strongly influences the magnitude and dynamics of organic C turnover in these ecosystems. This review synthesizes and summarizes current knowledge of distribution, turnover, and controls of Fe (hydr-)oxides, as well as their ecological roles and impacts on organic C turnover in coastal wetland ecosystems globally. Regional hydro-geochemical processes and anthropogenic activities in the uplands as well as soil texture exert a first-order control on the abundance and distribution of Fe (hydr-)oxides in coastal wetland soils, while the activities of plant roots and macro-organisms act as important biological drivers for the formation, transformation, and turnover of Fe (hydr-)oxides as well as associated organic C in both rhizosphere/burrows and bulk soils. The reported rates of dissimilatory Fe reduction (DFeR) are correlated with incubation temperature and the sizes of reactive Fe(III) phases. However, the contributions of DFeR to total anaerobic carbon oxidation were found to be correlated only with the size of reactive Fe(III) pools, meaning that all the identified processes contributing to the accumulation and formation of Fe hydroxides could increase the importance of the DFeR-dominated respiratory pathway and suppress sulfate reduction and methanogenesis. Additionally, Fe plaques dominated by amorphous Fe hydroxides are formed and cycled in close interaction with the activities of wetland plant roots, and likely provide several important ecological functions and contribute to maintaining high levels of plant productivity in coastal wetlands under different environmental stresses. The features and findings presented in this review not only contribute to an improved understanding of the biogeochemical cycle and ecological roles of Fe (hydr-)oxides in coastal wetlands, but also provide a basis for future studies on some highlighted key research areas. Such future studies will further increase our ability to understand and predict how the size, stability, and turnover of Fe (hydr-)oxides and organic C in coastal wetlands will respond to and affect global climate change.
  •  
4.
  • Yu, Changxun, et al. (author)
  • Effect of weathering on abundance and release of potentially toxic elements in soils developed on Lower Cambrian black shales, P. R. China
  • 2012
  • In: Environmental Geochemistry and Health. - : Springer. - 0269-4042 .- 1573-2983. ; 34:3, s. 375-390
  • Journal article (peer-reviewed)abstract
    • This paper examines the geochemical features of 8 soil profiles developed on metalliferous black shales distributed in the central parts of the South China black shale horizon. The concentrations of 21 trace elements and 8 major elements were determined using ICP-MS and XRF, respectively, and weathering intensity (W) was calculated according to a new technique recently proposed in the literature. The data showed that the black shale soils inherited a heterogeneous geochemical character from their parent materials. A partial least square regression model and EFbedrock (enrichment factor normalized to underlying bedrock) indicated that W was not a major control in the redistribution of trace metals. Barium, Sn, Cu, V, and U tended to be leached in the upper soil horizons and trapped by Al and Fe oxides, whereas Sb, Cd, and Mo with negative EF values across the whole profiles may have been leached out during the first stage of pedogenesis (mainly weathering of black shale). Compared with the Chinese average soils, the soils were strongly enriched in the potentially toxic metals Mo, Cd, Sb, Sn, U, V, Cu, and Ba, among which the 5 first listed were enriched to the highest degrees. Elevated concentrations of these toxic metals can have a long-term negative effect on human health, in particular, the soils in mining areas dominated by strongly acidic conditions. As a whole, the black shale soils have much in common with acid sulfate soils. Therefore, black shale soils together with acid sulfate soils deserve more attention in the context of metal exposure and human health.
  •  
5.
  •  
6.
  • Yu, Changxun, 1983-, et al. (author)
  • Storage and Distribution of Organic Carbon and Nutrients in Acidic Soils Developed on Sulfidic Sediments : The Roles of Reactive Iron and Macropores
  • 2024
  • In: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 58:21, s. 9200-9212
  • Journal article (peer-reviewed)abstract
    • In a boreal acidic sulfate-rich subsoil (pH 3–4) developing on sulfidic and organic-rich sediments over the past 70 years, extensive brownish-to-yellowish layers have formed on macropores. Our data reveal that these layers (“macropore surfaces”) are strongly enriched in 1 M HCl-extractable reactive iron (2–7% dry weight), largely bound to schwertmannite and 2-line ferrihydrite. These reactive iron phases trap large pools of labile organic matter (OM) and HCl-extractable phosphorus, possibly derived from the cultivated layer. Within soil aggregates, the OM is of a different nature from that on the macropore surfaces but similar to that in the underlying sulfidic sediments (C-horizon). This provides evidence that the sedimentary OM in the bulk subsoil has been largely preserved without significant decomposition and/or fractionation, likely due to physiochemical stabilization by the reactive iron phases that also existed abundantly within the aggregates. These findings not only highlight the important yet underappreciated roles of iron oxyhydroxysulfates in OM/nutrient storage and distribution in acidic sulfate-rich and other similar environments but also suggest that boreal acidic sulfate-rich subsoils and other similar soil systems (existing widely on coastal plains worldwide and being increasingly formed in thawing permafrost) may act as global sinks for OM and nutrients in the short run.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view