SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Simbruner G.) "

Search: WFRF:(Simbruner G.)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Doverhag, Christina, 1979, et al. (author)
  • Pharmacological and genetic inhibition of NADPH oxidase does not reduce brain damage in different models of perinatal brain injury in newborn mice
  • 2008
  • In: Neurobiology of Disease. - : Elsevier BV. - 1095-953X .- 0969-9961. ; 31:1, s. 133-44
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Inflammation and reactive oxygen species (ROS) are important in the development of perinatal brain injury. The ROS-generating enzyme NADPH oxidase (Nox2) is present in inflammatory cells and contributes to brain injury in adult animal models. HYPOTHESIS: NADPH oxidase contributes to ROS formation and development of injury in the immature brain and inhibition of NADPH oxidase attenuates perinatal brain injury. METHODS: We used animal models of term hypoxia-ischemia (HI) (P9 mice) as well as ibotenate-induced excitotoxic injury (P5 mice) mimicking features of periventricular leukomalacia in preterm infants. In vitro microglia cell cultures were used to investigate NADPH oxidase-dependent ROS formation. In vivo we determined the impact 1) of HI on NADPH oxidase gene expression 2) of genetic (gp91-phox/Nox2 knock-out) and 3) of pharmacological NADPH oxidase inhibition on HI-induced injury and NMDA receptor-mediated excitotoxic injury, respectively. Endpoints were ROS formation, oxidative stress, apoptosis, inflammation and extent of injury. RESULTS: Hypoxia-ischemia increased NADPH oxidase subunits mRNA expression in total brain tissue in vivo. In vitro ibotenate increased NADPH oxidase-dependent formation of reactive oxygen species in microglia. In vivo the inhibition of NADPH oxidase did not reduce the extent of brain injury in any of the animal models. In contrast, the injury was increased by inhibition of NADPH oxidase and genetic inhibition was associated with an increased level of galectin-3 and IL-1beta. CONCLUSION: NADPH oxidase is upregulated after hypoxia-ischemia and activated microglia cells are a possible source of Nox2-derived ROS. In contrast to findings in adult brain, NADPH oxidase does not significantly contribute to the pathogenesis of perinatal brain injury. Results obtained in adult animals cannot be transferred to newborns and inhibition of NADPH oxidase should not be used in attempts to attenuate injury.
  •  
2.
  •  
3.
  •  
4.
  • Zhu, Changlian, 1964, et al. (author)
  • Intraischemic mild hypothermia prevents neuronal cell death and tissue loss after neonatal cerebral hypoxia-ischemia
  • 2006
  • In: Eur J Neurosci. ; 23:2, s. 387-93
  • Journal article (peer-reviewed)abstract
    • The effectiveness of hypothermia in preventing ischemic brain damage depends on when it is started. The purpose of this study was to investigate the effects of temperature reduction during a hypoxic-ischemic (HI) insult on brain injury and signalling pathways of neuronal cell death and survival. Seven-day-old mice were subjected to left common carotid artery ligation and hypoxia (10% oxygen) at different temperatures (37, 36 or 34 degrees C) for 50 min. Brain injury at 7 days post-HI was significantly reduced from 67.4% at 37 degrees C to 31.6% at 36 degrees C and 10% at 34 degrees C, with no observable injury in the cortex of the 34 degrees C group. Cytochrome c release, caspase-3 activation and apoptosis-inducing factor translocation from mitochondria to nuclei were all significantly inhibited after intraischemic temperature reduction. Concurrently, the cell survival signalling pathway involving Akt was significantly sustained (the phosphorylated form of Akt was maintained) when the hypoxia temperature was decreased. These results indicate that intraischemic hypothermia diminished apoptosis through inhibition of both caspase-dependent and caspase-independent neuronal cell death pathways and promoted cell survival by inhibition of phosphorylated Akt dephosphorylation in the neonatal brain, thereby preventing neuronal cell death.
  •  
5.
  •  
6.
  • Zhu, Changlian, 1964, et al. (author)
  • Post-ischemic hypothermia-induced tissue protection and diminished apoptosis after neonatal cerebral hypoxia-ischemia
  • 2004
  • In: Brain Res. ; 996:1, s. 67-75
  • Journal article (peer-reviewed)abstract
    • Hypothermia is possibly the single most effective method of neuroprotection developed to date. However, the mechanisms are not completely understood. The aim of this study was to investigate the effects of post-ischemic hypothermia on brain injury and apoptotic neuronal cell death as well as related biochemical changes after neonatal hypoxia-ischemia (HI). Seven-day-old rats were subjected to left common carotid artery ligation and hypoxia (7.8%) for 1 h. Systemic hypothermia was induced immediately after hypoxia-ischemia, and body temperature was maintained at 30 degrees C for 10 h. The normothermic group was kept at 36 degrees C. Brain infarct volumes and neuronal loss in the CA1 area of the hippocampus were significantly reduced at 72 h post-HI in the hypothermia group. Cytochrome c release and activation of caspase-3 and -2 at 24 h post-HI were significantly diminished by hypothermia. The numbers of cytochrome c- and TUNEL-positive cells in the cortex and dentate gyrus of the hippocampus were significantly reduced in the hypothermia group compared with the normothermia group at 72 h post-HI. These results indicate that hypothermia may, at least partially, act through inhibition of the intrinsic pathway of caspase activation in the neonatal brain, thereby preventing apoptotic cell death.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view