SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Simkins L.) "

Search: WFRF:(Simkins L.)

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Simkins, L. M., et al. (author)
  • Topographic Controls on Channelized Meltwater in the Subglacial Environment
  • 2021
  • In: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 48:20
  • Journal article (peer-reviewed)abstract
    • Realistic characterization of subglacial hydrology necessitates knowledge of the range in form, scale, and spatiotemporal evolution of drainage networks. A relict subglacial meltwater corridor on the deglaciated Antarctic continental shelf encompasses 80 convergent and divergent channels, many of which are hundreds of meters wide and several of which lack a definable headwater source. Without significant surface-melt contributions to the bed like similarly described landforms in the Northern Hemisphere, channelized drainage capacity varies non-systematically by three orders of magnitude downstream. This signifies apparent additions and losses of basal water to the bed-channelized system that relates to bed topography. Larger magnitude grounding-line retreat events occurred while the channel system was active than once channelized drainage had ceased. Overall, this corridor demonstrates that meltwater drainage styles co-exist in time and space in response to bed topography, with prolonged impacts on grounding-line behavior.
  •  
3.
  • Graham, Alastair G.C., et al. (author)
  • Rapid retreat of Thwaites Glacier in the pre-satellite era
  • 2022
  • In: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 15, s. 706-713
  • Journal article (peer-reviewed)abstract
    • Understanding the recent history of Thwaites Glacier, and the processes controlling its ongoing retreat, is key to projecting Antarctic contributions to future sea-level rise. Of particular concern is how the glacier grounding zone might evolve over coming decades where it is stabilized by sea-floor bathymetric highs. Here we use geophysical data from an autonomous underwater vehicle deployed at the Thwaites Glacier ice front, to document the ocean-floor imprint of past retreat from a sea-bed promontory. We show patterns of back-stepping sedimentary ridges formed daily by a mechanism of tidal lifting and settling at the grounding line at a time when Thwaites Glacier was more advanced than it is today. Over a duration of 5.5 months, Thwaites grounding zone retreated at a rate of >2.1 km per year—twice the rate observed by satellite at the fastest retreating part of the grounding zone between 2011 and 2019. Our results suggest that sustained pulses of rapid retreat have occurred at Thwaites Glacier in the past two centuries. Similar rapid retreat pulses are likely to occur in the near future when the grounding zone migrates back off stabilizing high points on the sea floor.
  •  
4.
  • Greenwood, Sarah L., et al. (author)
  • Exceptions to bed-controlled ice sheet flow and retreat from glaciated continental margins worldwide
  • 2021
  • In: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 7:3
  • Journal article (peer-reviewed)abstract
    • Projections of ice sheet behavior hinge on how ice flow velocity evolves and the extent to which marine-based grounding lines are stable. Ice flow and grounding line retreat are variably governed by the coupling between the ice and underlying terrain. We ask to what degree catchment-scale bed characteristics determine ice flow and retreat, drawing on paleo-ice sheet landform imprints from 99 sites on continental shelves worldwide. We find that topographic setting has broadly steered ice flow and that the bed slope favors particular styles of retreat. However, we find exceptions to accepted rulesof behavior: Regional topographic highs are not always an impediment to fast ice flow, retreat may proceed in a controlled, steady manner on reverse slopes and, unexpectedly, the occurrence of ice streaming is not favored on a particular geological substrate. Furthermore, once grounding line retreat is under way, readvance is rarely observed regardless of regional bed characteristics.
  •  
5.
  • Greenwood, Sarah L., et al. (author)
  • Holocene reconfiguration and readvance of the East Antarctic Ice Sheet
  • 2018
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9
  • Journal article (peer-reviewed)abstract
    • How ice sheets respond to changes in their grounding line is important in understanding ice sheet vulnerability to climate and ocean changes. The interplay between regional grounding line change and potentially diverse ice flow behaviour of contributing catchments is relevant to an ice sheet's stability and resilience to change. At the last glacial maximum, marine-based ice streams in the western Ross Sea were fed by numerous catchments draining the East Antarctic Ice Sheet. Here we present geomorphological and acoustic stratigraphic evidence of ice sheet reorganisation in the South Victoria Land (SVL) sector of the western Ross Sea. The opening of a grounding line embayment unzipped ice sheet sub-sectors, enabled an ice flow direction change and triggered enhanced flow from SVL outlet glaciers. These relatively small catchments behaved independently of regional grounding line retreat, instead driving an ice sheet readvance that delivered a significant volume of ice to the ocean and was sustained for centuries.
  •  
6.
  • Halberstadt, Anna Ruth W., et al. (author)
  • Past ice-sheet behaviour : retreat scenarios and changing controls in the Ross Sea, Antarctica
  • 2016
  • In: The Cryosphere. - : Copernicus GmbH. - 1994-0416 .- 1994-0424. ; 10:3, s. 1003-1020
  • Journal article (peer-reviewed)abstract
    • Studying the history of ice-sheet behaviour in the Ross Sea, Antarctica's largest drainage basin can improve our understanding of patterns and controls on marine-based ice-sheet dynamics and provide constraints for numerical ice-sheet models. Newly collected high-resolution multibeam bathymetry data, combined with two decades of legacy multibeam and seismic data, are used to map glacial landforms and reconstruct palaeo ice-sheet drainage. During the Last Glacial Maximum, grounded ice reached the continental shelf edge in the eastern but not western Ross Sea. Recessional geomorphic features in the western Ross Sea indicate virtually continuous back-stepping of the ice-sheet grounding line. In the eastern Ross Sea, well-preserved linear features and a lack of small-scale recessional landforms signify rapid lift-off of grounded ice from the bed. Physiography exerted a first-order control on regional ice behaviour, while sea floor geology played an important subsidiary role. Previously published deglacial scenarios for Ross Sea are based on low-spatial-resolution marine data or terrestrial observations; however, this study uses high-resolution basin-wide geomorphology to constrain grounding-line retreat on the continental shelf. Our analysis of retreat patterns suggests that (1) retreat from the western Ross Sea was complex due to strong physiographic controls on ice-sheet drainage; (2) retreat was asynchronous across the Ross Sea and between troughs; (3) the eastern Ross Sea largely deglaciated prior to the western Ross Sea following the formation of a large grounding-line embayment over Whales Deep; and (4) our glacial geomorphic reconstruction converges with recent numerical models that call for significant and complex East Antarctic ice sheet and West Antarctic ice sheet contributions to the ice flow in the Ross Sea.
  •  
7.
  • Hogan, K. A., et al. (author)
  • Revealing the former bed of Thwaites Glacier using sea-floor bathymetry: implications for warm-water routing and bed controls on ice flow and buttressing
  • 2020
  • In: Cryosphere. - : Copernicus GmbH. - 1994-0416. ; 14:9, s. 2883-2908
  • Journal article (peer-reviewed)abstract
    • The geometry of the sea floor immediately beyond Antarctica's marine-terminating glaciers is a fundamental control on warm-water routing, but it also describes former topographic pinning points that have been important for ice-shelf buttressing. Unfortunately, this information is often lacking due to the inaccessibility of these areas for survey, leading to modelled or interpolated bathymetries being used as boundary conditions in numerical modelling simulations. At Thwaites Glacier (TG) this critical data gap was addressed in 2019 during the first cruise of the International Thwaites Glacier Collaboration (ITGC) project. We present more than 2000 km(2) of new multibeam echo-sounder (MBES) data acquired in exceptional sea-ice conditions immediately offshore TG, and we update existing bathymetric compilations. The cross-sectional areas of sea-floor troughs are under-predicted by up to 40% or are not resolved at all where MBES data are missing, suggesting that calculations of trough capacity, and thus oceanic heat flux, may be significantly underestimated. Spatial variations in the morphology of topographic highs, known to be former pinning points for the floating ice shelf of TG, indicate differences in bed composition that are supported by landform evidence. We discuss links to ice dynamics for an overriding ice mass including a potential positive feedback mechanism where erosion of soft erodible highs may lead to ice-shelf ungrounding even with little or no ice thinning. Analyses of bed roughnesses and basal drag contributions show that the sea-floor bathymetry in front of TG is an analogue for extant bed areas. Ice flow over the sea-floor troughs and ridges would have been affected by similarly high basal drag to that acting at the grounding zone today. We conclude that more can certainly be gleaned from these 3D bathymetric datasets regarding the likely spatial variability of bed roughness and bed composition types underneath TG. This work also addresses the requirements of recent numerical ice-sheet and ocean modelling studies that have recognised the need for accurate and high-resolution bathymetry to determine warm-water routing to the grounding zone and, ultimately, for predicting glacier retreat behaviour.
  •  
8.
  • Simkins, Lauren M., et al. (author)
  • Advances in understanding subglacial meltwater drainage from past ice sheets
  • 2022
  • In: Annals of Glaciology. - 0260-3055 .- 1727-5644. ; 63:87-89, s. 83-87
  • Journal article (peer-reviewed)abstract
    • Meltwater drainage beneath ice sheets is a fundamental consideration for understanding ice–bed conditions and bed-modulated ice flow, with potential impacts on terminus behavior and ice-shelf mass balance. While contemporary observations reveal the presence of basal water movement in the subglacial environment and inferred styles of drainage, the geological record of former ice sheets, including sediments and landforms on land and the seafloor, aids in understanding the spatiotemporal evolution of efficient and inefficient drainage systems and their impact on ice-sheet behavior. We highlight the past decade of advances in geological studies that focus on providing process-based information on subglacial hydrology of ice sheets, how these studies inform theory, numerical models and contemporary observations, and address the needs for future research.
  •  
9.
  • Simkins, Lauren M., et al. (author)
  • Anatomy of a meltwater drainage system beneath the ancestral East Antarctic ice sheet
  • 2017
  • In: Nature Geoscience. - 1752-0894 .- 1752-0908. ; 10:9, s. 691-697
  • Journal article (peer-reviewed)abstract
    • Subglacial hydrology is critical to understand the behaviour of ice sheets, yet active meltwater drainage beneath contemporary ice sheets is rarely accessible to direct observation. Using geophysical and sedimentological data from the deglaciated western Ross Sea, we identify a palaeo-subglacial hydrological system active beneath an area formerly covered by the East Antarctic ice sheet. A long channel network repeatedly delivered meltwater to an ice stream grounding line and was a persistent pathway for episodic meltwater drainage events. Embayments within grounding-line landforms coincide with the location of subglacial channels, marking reduced sedimentation and restricted landform growth. Consequently, channelized drainage at the grounding line influenced the degree to which these landforms could provide stability feedbacks to the ice stream. The channel network was connected to upstream subglacial lakes in an area of geologically recent rifting and volcanism, where elevated heat flux would have produced sufficient basal melting to fill the lakes over decades to several centuries; this timescale is consistent with our estimates of the frequency of drainage events at the retreating grounding line. Based on these data, we hypothesize that ice stream dynamics in this region were sensitive to the underlying hydrological system.
  •  
10.
  • Simkins, Lauren M., et al. (author)
  • Diagnosing ice sheet grounding line stability from landform morphology
  • 2018
  • In: The Cryosphere. - : Copernicus GmbH. - 1994-0416 .- 1994-0424. ; 12:8, s. 2707-2726
  • Journal article (peer-reviewed)abstract
    • The resilience of a marine-based ice sheet is strongly governed by the stability of its grounding lines, which are in turn sensitive to ocean-induced melting, calving, and flotation of the ice margin. Since the grounding line is also a sedimentary environment, the constructional landforms that are built here may reflect elements of the processes governing this dynamic and potentially vulnerable environment. Here we analyse a large dataset (n = 6275) of grounding line landforms mapped on the western Ross Sea continental shelf from high-resolution geophysical data. The population is divided into two distinct morphotypes by their morphological properties: recessional moraines (consistently narrow, closely spaced, low amplitude, symmetric, and straight) and grounding zone wedges (broad, widely spaced, higher amplitude, asymmetric, sinuous, and highly variable). Landform morphotypes cluster with alike forms that transition abruptly between morphotypes both spatially and within a retreat sequence. Their form and distribution are largely independent of water depth, bed slope, and position relative to glacial troughs. Similarly, we find no conclusive evidence for morphology being determined by the presence or absence of an ice shelf. Instead, grounding zone wedge construction is favoured by a higher sediment flux and a longer-held grounding position. We propose two endmember modes of grounding line retreat: (1) an irregular mode, characterised by grounding zone wedges with longer standstills and accompanied by larger-magnitude retreat events, and (2) a steady mode, characterised by moraine sequences that instead represent more frequent but smaller-magnitude retreat events. We suggest that while sediment accumulation and progradation may prolong the stability of a grounding line position, progressive development of sinuosity in the grounding line due to spatially variable sediment delivery likely destabilises the grounding position by enhanced ablation, triggering large-magnitude retreat events. Here, the concept of stability is multifaceted and paradoxical, and neither mode can be characterised as marking fast or slow retreat. Diagnosing grounding line stability based on landform products should be considered for a wider geographic range, yet this large dataset of landforms prompts the need to better understand the sensitivity of marine-based grounding lines to processes and feedbacks governing retreat and what stability means in the context of future grounding line behaviour.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view