SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Simone Matteo) "

Search: WFRF:(Simone Matteo)

  • Result 1-10 of 50
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Jones, Geraint H., et al. (author)
  • The Comet Interceptor Mission
  • 2024
  • In: Space Science Reviews. - : Springer Nature. - 0038-6308 .- 1572-9672. ; 220:1
  • Journal article (peer-reviewed)abstract
    • Here we describe the novel, multi-point Comet Interceptor mission. It is dedicated to the exploration of a little-processed long-period comet, possibly entering the inner Solar System for the first time, or to encounter an interstellar object originating at another star. The objectives of the mission are to address the following questions: What are the surface composition, shape, morphology, and structure of the target object? What is the composition of the gas and dust in the coma, its connection to the nucleus, and the nature of its interaction with the solar wind? The mission was proposed to the European Space Agency in 2018, and formally adopted by the agency in June 2022, for launch in 2029 together with the Ariel mission. Comet Interceptor will take advantage of the opportunity presented by ESA’s F-Class call for fast, flexible, low-cost missions to which it was proposed. The call required a launch to a halo orbit around the Sun-Earth L2 point. The mission can take advantage of this placement to wait for the discovery of a suitable comet reachable with its minimum Δ V capability of 600 ms − 1 . Comet Interceptor will be unique in encountering and studying, at a nominal closest approach distance of 1000 km, a comet that represents a near-pristine sample of material from the formation of the Solar System. It will also add a capability that no previous cometary mission has had, which is to deploy two sub-probes – B1, provided by the Japanese space agency, JAXA, and B2 – that will follow different trajectories through the coma. While the main probe passes at a nominal 1000 km distance, probes B1 and B2 will follow different chords through the coma at distances of 850 km and 400 km, respectively. The result will be unique, simultaneous, spatially resolved information of the 3-dimensional properties of the target comet and its interaction with the space environment. We present the mission’s science background leading to these objectives, as well as an overview of the scientific instruments, mission design, and schedule.
  •  
3.
  •  
4.
  • Pataki, Nathan James, et al. (author)
  • A Rolled Organic Thermoelectric Generator with High Thermocouple Density
  • 2024
  • In: Advanced Functional Materials. - : WILEY-V C H VERLAG GMBH. - 1616-301X .- 1616-3028.
  • Journal article (peer-reviewed)abstract
    • The surge in the number of distributed microelectronics and sensors requires versatile, scalable, and affordable power sources. Heat-harvesting organic thermoelectric generators (TEGs) are regarded as potential key components of the future energy landscape. Recent advances in the performance of organic thermoelectric materials have made practical applications of organic TEGs more feasible than ever before, yet the challenges of designing and fabricating organic TEGs suitable for real scenarios are scarcely addressed. Specifically, small sensors and wearables demand for micro-thermoelectric generators (mu TEGs) with high power density architectures and small form factors, while typical demonstrations of organic TEGs are characterized by < 10 thermocouples (TCs) per cm(2). This work presents a rolled, organic mu TEG architecture combining large-area, solution-based deposition techniques, such as inkjet and spray-coating, and an ultrathin parylene substrate to achieve a thermocouple density of 1842 TCs cm(-2). Such demonstrative mu TEG reaches a thermoelectric conversion performance of 0.15 mu W cm(-2) at Delta T = 50 K. Such power output is well in line with finite element method simulations, which highlight the benefit of the architecture and show that remarkable power densities, in the mW cm(-2) range at Delta T = 10 K, are realistically achievable with geometrical improvements and already ongoing advancements in organic thermoelectric inks.
  •  
5.
  • Scrima, Simone, et al. (author)
  • Comparison of force fields to study the zinc-finger containing protein NPL4, a target for disulfiram in cancer therapy
  • 2023
  • In: Biochimica et Biophysica Acta - Proteins and Proteomics. - 1570-9639. ; 1871:4
  • Journal article (peer-reviewed)abstract
    • Molecular dynamics (MD) simulations are a powerful approach to studying the structure and dynamics of proteins related to health and disease. Advances in the MD field allow modeling proteins with high accuracy. However, modeling metal ions and their interactions with proteins is still challenging. NPL4 is a zinc-binding protein and works as a cofactor for p97 to regulate protein homeostasis. NPL4 is of biomedical importance and has been proposed as the target of disulfiram, a drug recently repurposed for cancer treatment. Experimental studies proposed that the disulfiram metabolites, bis-(diethyldithiocarbamate)‑copper and cupric ions, induce NPL4 misfolding and aggregation. However, the molecular details of their interactions with NPL4 and consequent structural effects are still elusive. Here, biomolecular simulations can help to shed light on the related structural details. To apply MD simulations to NPL4 and its interaction with copper the first important step is identifying a suitable force field to describe the protein in its zinc-bound states. We examined different sets of non-bonded parameters because we want to study the misfolding mechanism and cannot rule out that the zinc may detach from the protein during the process and copper replaces it. We investigated the force-field ability to model the coordination geometry of the metal ions by comparing the results from MD simulations with optimized geometries from quantum mechanics (QM) calculations using model systems of NPL4. Furthermore, we investigated the performance of a force field including bonded parameters to treat copper ions in NPL4 that we obtained based on QM calculations.
  •  
6.
  • Abeli, Thomas, et al. (author)
  • Geographical pattern in the response of the arctic-alpine Silene suecica (Cariophyllaceae) to the interaction between water availability and photoperiod
  • 2015
  • In: Ecological research. - : Wiley. - 0912-3814 .- 1440-1703. ; 30:2, s. 327-335
  • Journal article (peer-reviewed)abstract
    • We hypothesized a geographical pattern of the plant performance (seedling development, biomass production, relative water content and chlorophyll content) as a result of response to the interaction between photoperiod and water availability in populations of the arctic-alpine Silene suecica from different latitudes, thus experiencing different photoperiods during the growing season. Particularly, we expected a lower drought sensitivity in northern compared to southern populations as a consequence of harsher conditions experienced by the northern populations in terms of water availability. The experiment was carried out under common garden conditions, manipulating the water availability (wet and dry) and the photoperiod (21 and 16 h). We found an interaction between photoperiod and water availability on plant height, leaves, growth, biomass and total chlorophyll. However, the photoperiod neither counteracted nor intensified the effect of drought. Plants exposed to drought compensated for decreasing water availability by reducing their shoot growth. Changes in the chlorophyll content and chlorophyll a/b ratio were observed. Northern populations showed a higher basal growth performance and a greater response to the changed water regime (from wet to dry) than the southern populations. Southern populations showed a reduced ability to respond to drought, but their low basal performance may be advantageous under low water availability, avoiding water loss. In contrast, northern populations showed a stronger plastic response that limited the negative effects of reduced water availability. This study highlights the possibility that the plant response to environmental constraints (specifically water availability) may follow a geographical pattern.
  •  
7.
  •  
8.
  • Backes, Claudia, et al. (author)
  • Production and processing of graphene and related materials
  • 2020
  • In: 2D Materials. - : IOP Publishing. - 2053-1583. ; 7:2
  • Journal article (peer-reviewed)abstract
    • We present an overview of the main techniques for production and processing of graphene and related materials (GRMs), as well as the key characterization procedures. We adopt a 'hands-on' approach, providing practical details and procedures as derived from literature as well as from the authors' experience, in order to enable the reader to reproduce the results. Section I is devoted to 'bottom up' approaches, whereby individual constituents are pieced together into more complex structures. We consider graphene nanoribbons (GNRs) produced either by solution processing or by on-surface synthesis in ultra high vacuum (UHV), as well carbon nanomembranes (CNM). Production of a variety of GNRs with tailored band gaps and edge shapes is now possible. CNMs can be tuned in terms of porosity, crystallinity and electronic behaviour. Section II covers 'top down' techniques. These rely on breaking down of a layered precursor, in the graphene case usually natural crystals like graphite or artificially synthesized materials, such as highly oriented pyrolythic graphite, monolayers or few layers (FL) flakes. The main focus of this section is on various exfoliation techniques in a liquid media, either intercalation or liquid phase exfoliation (LPE). The choice of precursor, exfoliation method, medium as well as the control of parameters such as time or temperature are crucial. A definite choice of parameters and conditions yields a particular material with specific properties that makes it more suitable for a targeted application. We cover protocols for the graphitic precursors to graphene oxide (GO). This is an important material for a range of applications in biomedicine, energy storage, nanocomposites, etc. Hummers' and modified Hummers' methods are used to make GO that subsequently can be reduced to obtain reduced graphene oxide (RGO) with a variety of strategies. GO flakes are also employed to prepare three-dimensional (3d) low density structures, such as sponges, foams, hydro- or aerogels. The assembly of flakes into 3d structures can provide improved mechanical properties. Aerogels with a highly open structure, with interconnected hierarchical pores, can enhance the accessibility to the whole surface area, as relevant for a number of applications, such as energy storage. The main recipes to yield graphite intercalation compounds (GICs) are also discussed. GICs are suitable precursors for covalent functionalization of graphene, but can also be used for the synthesis of uncharged graphene in solution. Degradation of the molecules intercalated in GICs can be triggered by high temperature treatment or microwave irradiation, creating a gas pressure surge in graphite and exfoliation. Electrochemical exfoliation by applying a voltage in an electrolyte to a graphite electrode can be tuned by varying precursors, electrolytes and potential. Graphite electrodes can be either negatively or positively intercalated to obtain GICs that are subsequently exfoliated. We also discuss the materials that can be amenable to exfoliation, by employing a theoretical data-mining approach. The exfoliation of LMs usually results in a heterogeneous dispersion of flakes with different lateral size and thickness. This is a critical bottleneck for applications, and hinders the full exploitation of GRMs produced by solution processing. The establishment of procedures to control the morphological properties of exfoliated GRMs, which also need to be industrially scalable, is one of the key needs. Section III deals with the processing of flakes. (Ultra)centrifugation techniques have thus far been the most investigated to sort GRMs following ultrasonication, shear mixing, ball milling, microfluidization, and wet-jet milling. It allows sorting by size and thickness. Inks formulated from GRM dispersions can be printed using a number of processes, from inkjet to screen printing. Each technique has specific rheological requirements, as well as geometrical constraints. The solvent choice is critical, not only for the GRM stability, but also in terms of optimizing printing on different substrates, such as glass, Si, plastic, paper, etc, all with different surface energies. Chemical modifications of such substrates is also a key step. Sections IV-VII are devoted to the growth of GRMs on various substrates and their processing after growth to place them on the surface of choice for specific applications. The substrate for graphene growth is a key determinant of the nature and quality of the resultant film. The lattice mismatch between graphene and substrate influences the resulting crystallinity. Growth on insulators, such as SiO2, typically results in films with small crystallites, whereas growth on the close-packed surfaces of metals yields highly crystalline films. Section IV outlines the growth of graphene on SiC substrates. This satisfies the requirements for electronic applications, with well-defined graphene-substrate interface, low trapped impurities and no need for transfer. It also allows graphene structures and devices to be measured directly on the growth substrate. The flatness of the substrate results in graphene with minimal strain and ripples on large areas, allowing spectroscopies and surface science to be performed. We also discuss the surface engineering by intercalation of the resulting graphene, its integration with Si-wafers and the production of nanostructures with the desired shape, with no need for patterning. Section V deals with chemical vapour deposition (CVD) onto various transition metals and on insulators. Growth on Ni results in graphitized polycrystalline films. While the thickness of these films can be optimized by controlling the deposition parameters, such as the type of hydrocarbon precursor and temperature, it is difficult to attain single layer graphene (SLG) across large areas, owing to the simultaneous nucleation/growth and solution/precipitation mechanisms. The differing characteristics of polycrystalline Ni films facilitate the growth of graphitic layers at different rates, resulting in regions with differing numbers of graphitic layers. High-quality films can be grown on Cu. Cu is available in a variety of shapes and forms, such as foils, bulks, foams, thin films on other materials and powders, making it attractive for industrial production of large area graphene films. The push to use CVD graphene in applications has also triggered a research line for the direct growth on insulators. The quality of the resulting films is lower than possible to date on metals, but enough, in terms of transmittance and resistivity, for many applications as described in section V. Transfer technologies are the focus of section VI. CVD synthesis of graphene on metals and bottom up molecular approaches require SLG to be transferred to the final target substrates. To have technological impact, the advances in production of high-quality large-area CVD graphene must be commensurate with those on transfer and placement on the final substrates. This is a prerequisite for most applications, such as touch panels, anticorrosion coatings, transparent electrodes and gas sensors etc. New strategies have improved the transferred graphene quality, making CVD graphene a feasible option for CMOS foundries. Methods based on complete etching of the metal substrate in suitable etchants, typically iron chloride, ammonium persulfate, or hydrogen chloride although reliable, are time- and resource-consuming, with damage to graphene and production of metal and etchant residues. Electrochemical delamination in a low-concentration aqueous solution is an alternative. In this case metallic substrates can be reused. Dry transfer is less detrimental for the SLG quality, enabling a deterministic transfer. There is a large range of layered materials (LMs) beyond graphite. Only few of them have been already exfoliated and fully characterized. Section VII deals with the growth of some of these materials. Amongst them, h-BN, transition metal tri- and di-chalcogenides are of paramount importance. The growth of h-BN is at present considered essential for the development of graphene in (opto) electronic applications, as h-BN is ideal as capping layer or substrate. The interesting optical and electronic properties of TMDs also require the development of scalable methods for their production. Large scale growth using chemical/physical vapour deposition or thermal assisted conversion has been thus far limited to a small set, such as h-BN or some TMDs. Heterostructures could also be directly grown. Section VIII discusses advances in GRM functionalization. A broad range of organic molecules can be anchored to the sp(2) basal plane by reductive functionalization. Negatively charged graphene can be prepared in liquid phase (e.g. via intercalation chemistry or electrochemically) and can react with electrophiles. This can be achieved both in dispersion or on substrate. The functional groups of GO can be further derivatized. Graphene can also be noncovalently functionalized, in particular with polycyclic aromatic hydrocarbons that assemble on the sp(2) carbon network by pi-pi stacking. In the liquid phase, this can enhance the colloidal stability of SLG/FLG. Approaches to achieve noncovalent on-substrate functionalization are also discussed, which can chemically dope graphene. Research efforts to derivatize CNMs are also summarized, as well as novel routes to selectively address defect sites. In dispersion, edges are the most dominant defects and can be covalently modified. This enhances colloidal stability without modifying the graphene basal plane. Basal plane point defects can also be modified, passivated and healed in ultra-high vacuum. The decoration of graphene with metal nanoparticles (NPs) has also received considerable attention, as it allows to exploit synergistic effects between NPs and graphene. Decoration can be either achieved chemically or in the gas phase. All LMs,
  •  
9.
  • Berto, Marcello, et al. (author)
  • Biorecognition in Organic Field Effect Transistors Biosensors: The Role of the Density of States of the Organic Semiconductor
  • 2016
  • In: ANALYTICAL CHEMISTRY. - : AMER CHEMICAL SOC. - 0003-2700 .- 1520-6882. ; 88:24, s. 12330-12338
  • Journal article (peer-reviewed)abstract
    • Biorecognition is a central event in biological processes in the living systems that is also widely exploited in technological and health applications. We demonstrate that the Electrolyte Gated Organic Field Effect Transistor (EGOFET) is an ultrasensitive and specific device that allows us to quantitatively assess the thermodynamics of biomolecular recognition between a human antibody and its antigen, namely, the inflammatory cytokine TNF alpha at the solid/liquid interface. The EGOFET biosensor exhibits a superexponential response at TNF alpha concentration below 1 nM with a minimum detection level of 100 pM. The sensitivity of the device depends on the analyte concentration, reaching a maximum in the range of clinically relevant TNF alpha concentrations when the EGOFET is operated in the subthreshold regime. At concentrations greater than 1 nM the response scales linearly with the concentration. The sensitivity and the dynamic range are both modulated by the gate voltage. These results are explained by establishing the correlation between the sensitivity and the density of states (DOS) of the organic semiconductor. Then, the superexponential response arises from the energy-dependence of the tail of the DOS of the HOMO level. From the gate voltage-dependent response, we extract the binding constant, as well as the changes of the surface charge and the effective capacitance accompanying biorecognition at the electrode surface. Finally, we demonstrate the detection of TNF alpha in human-plasma derived samples as an example for point-of-care application.
  •  
10.
  • Cailotto, Simone, et al. (author)
  • N-Doped Carbon Dot Hydrogels from Brewing Waste for Photocatalytic Wastewater Treatment
  • 2022
  • In: ACS Omega. - : American Chemical Society (ACS). - 2470-1343. ; 7:5, s. 4052-4061
  • Journal article (peer-reviewed)abstract
    • The brewery industry annually produces huge amounts of byproducts that represent an underutilized, yet valuable, source of biobased compounds. In this contribution, the two major beer wastes, that is, spent grains and spent yeasts, have been transformed into carbon dots (CDs) by a simple, scalable, and ecofriendly hydrothermal approach. The prepared CDs have been characterized from the chemical, morphological, and optical points of view, highlighting a high level of N-doping, because of the chemical composition of the starting material rich in proteins, photoluminescence emission centered at 420 nm, and lifetime in the range of 5.5–7.5 ns. With the aim of producing a reusable catalytic system for wastewater treatment, CDs have been entrapped into a polyvinyl alcohol matrix and tested for their dye removal ability. The results demonstrate that methylene blue can be efficiently adsorbed from water solutions into the composite hydrogel and subsequently fully degraded by UV irradiation.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 50
Type of publication
journal article (44)
conference paper (3)
research review (2)
reports (1)
Type of content
peer-reviewed (48)
other academic/artistic (2)
Author/Editor
Massetti, Matteo (11)
Fabiano, Simone (10)
Berggren, Magnus (6)
Tubiana, Cecilia (6)
Da Deppo, Vania (6)
Vincent, Jean-Baptis ... (6)
show more...
Agarwal, Jessica (5)
Rickman, Hans (5)
Thomas, Nicolas (5)
Tu, Deyu (5)
Yang, Chiyuan (5)
Bertini, Ivano (5)
Pajola, Maurizio (5)
Barbieri, Cesare (5)
Ferri, Francesca (5)
Sierks, Holger (5)
Fulle, Marco (5)
Cremonese, Gabriele (5)
Groussin, Olivier (5)
La Forgia, Fiorangel ... (5)
Mottola, Stefano (5)
Jorda, Laurent (5)
Koschny, Detlef (5)
Lara, Luisa M. (5)
Lazzarin, Monica (5)
Rodrigo, Rafael (5)
Massironi, Matteo (5)
Fahlman, Mats (4)
Liu, Xianjie (4)
Stoeckel, Marc-Antoi ... (4)
Snodgrass, Colin (4)
Bertaux, Jean-Loup (4)
Ip, Wing-Huen (4)
Besse, Sébastien (4)
Marzari, Francesco (4)
Moissl, Richard (4)
Fornasier, Sonia (4)
Oklay, Nilda (4)
Guettler, Carsten (4)
Kueppers, Michael (4)
A'Hearn, Michael F. (4)
Ruoko, Tero-Petri (4)
Padinhare, Harikesh (4)
Hviid, Stubbe F. (4)
Preusker, Frank (4)
Debei, Stefano (4)
De Cecco, Mariolino (4)
Naletto, Giampiero (4)
Giacomini, Lorenza (4)
Knollenberg, Joerg (4)
show less...
University
Linköping University (16)
Lund University (12)
University of Gothenburg (10)
Uppsala University (7)
Chalmers University of Technology (7)
Umeå University (4)
show more...
Luleå University of Technology (3)
Stockholm University (3)
Karolinska Institutet (2)
Royal Institute of Technology (1)
Halmstad University (1)
Örebro University (1)
RISE (1)
Swedish University of Agricultural Sciences (1)
show less...
Language
English (49)
Swedish (1)
Research subject (UKÄ/SCB)
Natural sciences (32)
Engineering and Technology (13)
Medical and Health Sciences (12)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view