SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Sims Andrew H.) "

Search: WFRF:(Sims Andrew H.)

  • Result 1-10 of 17
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Kanai, M, et al. (author)
  • 2023
  • swepub:Mat__t
  •  
2.
  • Wessel, Jennifer, et al. (author)
  • Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility
  • 2015
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 6
  • Journal article (peer-reviewed)abstract
    • Fasting glucose and insulin are intermediate traits for type 2 diabetes. Here we explore the role of coding variation on these traits by analysis of variants on the HumanExome BeadChip in 60,564 non-diabetic individuals and in 16,491 T2D cases and 81,877 controls. We identify a novel association of a low-frequency nonsynonymous SNV in GLP1R (A316T; rs10305492; MAF = 1.4%) with lower FG (beta = -0.09 +/- 0.01 mmol l(-1), P = 3.4 x 10(-12)), T2D risk (OR[95% CI] = 0.86[0.76-0.96], P = 0.010), early insulin secretion (beta = -0.07 +/- 0.035 pmol(insulin) mmol(glucose)(-1), P = 0.048), but higher 2-h glucose (beta = 0.16 +/- 0.05 mmol l(-1), P = 4.3 x 10(-4)). We identify a gene-based association with FG at G6PC2 (p(SKAT) = 6.8 x 10(-6)) driven by four rare protein-coding SNVs (H177Y, Y207S, R283X and S324P). We identify rs651007 (MAF = 20%) in the first intron of ABO at the putative promoter of an antisense lncRNA, associating with higher FG (beta = 0.02 +/- 0.004 mmol l(-1), P = 1.3 x 10(-8)). Our approach identifies novel coding variant associations and extends the allelic spectrum of variation underlying diabetes-related quantitative traits and T2D susceptibility.
  •  
3.
  • Gorski, Mathias, et al. (author)
  • Genetic loci and prioritization of genes for kidney function decline derived from a meta-analysis of 62 longitudinal genome-wide association studies
  • 2022
  • In: Kidney International. - : Elsevier. - 0085-2538 .- 1523-1755. ; 102:3, s. 624-639
  • Journal article (peer-reviewed)abstract
    • Estimated glomerular filtration rate (eGFR) reflects kidney function. Progressive eGFR-decline can lead to kidney failure, necessitating dialysis or transplantation. Hundreds of loci from genome-wide association studies (GWAS) for eGFR help explain population cross section variability. Since the contribution of these or other loci to eGFR-decline remains largely unknown, we derived GWAS for annual eGFR-decline and meta-analyzed 62 longitudinal studies with eGFR assessed twice over time in all 343,339 individuals and in high-risk groups. We also explored different covariate adjustment. Twelve genomewide significant independent variants for eGFR-decline unadjusted or adjusted for eGFR- baseline (11 novel, one known for this phenotype), including nine variants robustly associated across models were identified. All loci for eGFR-decline were known for cross-sectional eGFR and thus distinguished a subgroup of eGFR loci. Seven of the nine variants showed variant- by-age interaction on eGFR cross section (further about 350,000 individuals), which linked genetic associations for eGFR-decline with agedependency of genetic cross- section associations. Clinically important were two to four-fold greater genetic effects on eGFR-decline in high-risk subgroups. Five variants associated also with chronic kidney disease progression mapped to genes with functional in- silico evidence (UMOD, SPATA7, GALNTL5, TPPP). An unfavorable versus favorable nine-variant genetic profile showed increased risk odds ratios of 1.35 for kidney failure (95% confidence intervals 1.03- 1.77) and 1.27 for acute kidney injury (95% confidence intervals 1.08-1.50) in over 2000 cases each, with matched controls). Thus, we provide a large data resource, genetic loci, and prioritized genes for kidney function decline, which help inform drug development pipelines revealing important insights into the age-dependency of kidney function genetics.
  •  
4.
  • Mohammed Taha, Hiba, et al. (author)
  • The NORMAN Suspect List Exchange (NORMAN-SLE) : facilitating European and worldwide collaboration on suspect screening in high resolution mass spectrometry
  • 2022
  • In: Environmental Sciences Europe. - : Springer. - 2190-4707 .- 2190-4715. ; 34:1
  • Journal article (peer-reviewed)abstract
    • Background: The NORMAN Association (https://www.norman-network.com/) initiated the NORMAN Suspect List Exchange (NORMAN-SLE; https://www.norman-network.com/nds/SLE/) in 2015, following the NORMAN collaborative trial on non-target screening of environmental water samples by mass spectrometry. Since then, this exchange of information on chemicals that are expected to occur in the environment, along with the accompanying expert knowledge and references, has become a valuable knowledge base for “suspect screening” lists. The NORMAN-SLE now serves as a FAIR (Findable, Accessible, Interoperable, Reusable) chemical information resource worldwide.Results: The NORMAN-SLE contains 99 separate suspect list collections (as of May 2022) from over 70 contributors around the world, totalling over 100,000 unique substances. The substance classes include per- and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides, natural toxins, high production volume substances covered under the European REACH regulation (EC: 1272/2008), priority contaminants of emerging concern (CECs) and regulatory lists from NORMAN partners. Several lists focus on transformation products (TPs) and complex features detected in the environment with various levels of provenance and structural information. Each list is available for separate download. The merged, curated collection is also available as the NORMAN Substance Database (NORMAN SusDat). Both the NORMAN-SLE and NORMAN SusDat are integrated within the NORMAN Database System (NDS). The individual NORMAN-SLE lists receive digital object identifiers (DOIs) and traceable versioning via a Zenodo community (https://zenodo.org/communities/norman-sle), with a total of > 40,000 unique views, > 50,000 unique downloads and 40 citations (May 2022). NORMAN-SLE content is progressively integrated into large open chemical databases such as PubChem (https://pubchem.ncbi.nlm.nih.gov/) and the US EPA’s CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard/), enabling further access to these lists, along with the additional functionality and calculated properties these resources offer. PubChem has also integrated significant annotation content from the NORMAN-SLE, including a classification browser (https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101).Conclusions: The NORMAN-SLE offers a specialized service for hosting suspect screening lists of relevance for the environmental community in an open, FAIR manner that allows integration with other major chemical resources. These efforts foster the exchange of information between scientists and regulators, supporting the paradigm shift to the “one substance, one assessment” approach. New submissions are welcome via the contacts provided on the NORMAN-SLE website (https://www.norman-network.com/nds/SLE/).
  •  
5.
  • Sproul, Duncan, et al. (author)
  • Transcriptionally repressed genes become aberrantly methylated and distinguish tumors of different lineages in breast cancer
  • 2011
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 108:11, s. 4364-4369
  • Journal article (peer-reviewed)abstract
    • Aberrant promoter hypermethylation is frequently observed in cancer. The potential for this mechanism to contribute to tumor development depends on whether the genes affected are repressed because of their methylation. Many aberrantly methylated genes play important roles in development and are bivalently marked in ES cells, suggesting that their aberrant methylation may reflect developmental processes. We investigated this possibility by analyzing promoter methylation in 19 breast cancer cell lines and 47 primary breast tumors. In cell lines, we defined 120 genes that were significantly repressed in association with methylation (SRAM). These genes allowed the unsupervised segregation of cell lines into epithelial (EPCAM+ve) and mesenchymal (EPCAM-ve) lineages. However, the methylated genes were already repressed in normal cells of the same lineage, and >90% could not be derepressed by treatment with 5-aza-2'-deoxycytidine. The tumor suppressor genes APC and CDH1 were among those methylated in a lineage-specific fashion. As predicted by the epithelial nature of most breast tumors, SRAM genes that were methylated in epithelial cell lines were frequently aberrantly methylated in primary tumors, as were genes specifically repressed in normal epithelial cells. An SRAM gene expression signature also correctly identified the rare claudin-low and metaplastic tumors as having mesenchymal characteristics. Our findings implicate aberrant DNA methylation as a marker of cell lineage rather than tumor progression and suggest that, in most cases, it does not cause the repression with which it is associated.
  •  
6.
  • Tobias, Deirdre K, et al. (author)
  • Second international consensus report on gaps and opportunities for the clinical translation of precision diabetes medicine
  • 2023
  • In: Nature Medicine. - 1546-170X. ; 29:10, s. 2438-2457
  • Research review (peer-reviewed)abstract
    • Precision medicine is part of the logical evolution of contemporary evidence-based medicine that seeks to reduce errors and optimize outcomes when making medical decisions and health recommendations. Diabetes affects hundreds of millions of people worldwide, many of whom will develop life-threatening complications and die prematurely. Precision medicine can potentially address this enormous problem by accounting for heterogeneity in the etiology, clinical presentation and pathogenesis of common forms of diabetes and risks of complications. This second international consensus report on precision diabetes medicine summarizes the findings from a systematic evidence review across the key pillars of precision medicine (prevention, diagnosis, treatment, prognosis) in four recognized forms of diabetes (monogenic, gestational, type 1, type 2). These reviews address key questions about the translation of precision medicine research into practice. Although not complete, owing to the vast literature on this topic, they revealed opportunities for the immediate or near-term clinical implementation of precision diabetes medicine; furthermore, we expose important gaps in knowledge, focusing on the need to obtain new clinically relevant evidence. Gaps include the need for common standards for clinical readiness, including consideration of cost-effectiveness, health equity, predictive accuracy, liability and accessibility. Key milestones are outlined for the broad clinical implementation of precision diabetes medicine.
  •  
7.
  • Willer, Cristen J., et al. (author)
  • Six new loci associated with body mass index highlight a neuronal influence on body weight regulation
  • 2009
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 41:1, s. 25-34
  • Journal article (peer-reviewed)abstract
    • Common variants at only two loci, FTO and MC4R, have been reproducibly associated with body mass index (BMI) in humans. To identify additional loci, we conducted meta-analysis of 15 genome-wide association studies for BMI (n > 32,000) and followed up top signals in 14 additional cohorts (n > 59,000). We strongly confirm FTO and MC4R and identify six additional loci (P < 5 x 10(-8)): TMEM18, KCTD15, GNPDA2, SH2B1, MTCH2 and NEGR1 (where a 45-kb deletion polymorphism is a candidate causal variant). Several of the likely causal genes are highly expressed or known to act in the central nervous system (CNS), emphasizing, as in rare monogenic forms of obesity, the role of the CNS in predisposition to obesity.
  •  
8.
  • Lehn, Sophie, et al. (author)
  • Decreased expression of Yes-associated protein is associated with outcome in the luminal A breast cancer subgroup and with an impaired tamoxifen response
  • 2014
  • In: Bmc Cancer. - : Springer Science and Business Media LLC. - 1471-2407. ; 14
  • Journal article (peer-reviewed)abstract
    • Background: Yes-associated protein (YAP1) is frequently reported to function as an oncogene in many types of cancer, but in breast cancer results remain controversial. We set out to clarify the role of YAP1 in breast cancer by examining gene and protein expression in subgroups of patient material and by downregulating YAP1 in vitro and studying its role in response to the widely used anti-estrogen tamoxifen. Methods: YAP1 protein intensity was scored as absent, weak, intermediate or strong in two primary breast cancer cohorts (n = 144 and n = 564) and mRNA expression of YAP1 was evaluated in a gene expression dataset (n = 1107). Recurrence-free survival was analysed using the log-rank test and Cox multivariate analysis was used to test for independence. WST-1 assay was employed to measure cell viability and a luciferase ERE (estrogen responsive element) construct was used to study the effect of tamoxifen, following downregulation of YAP1 using siRNAs. Results: In the ER+ (Estrogen Receptor a positive) subgroup of the randomised cohort, YAP1 expression was inversely correlated to histological grade and proliferation (p = 0.001 and p = 0.016, respectively) whereas in the ER-(Estrogen Receptor a negative) subgroup YAP1 expression correlated positively to proliferation (p = 0.005). Notably, low YAP1 mRNA was independently associated with decreased recurrence-free survival in the gene expression dataset, specifically for the luminal A subgroup (p < 0.001) which includes low proliferating tumours of lower grade, usually associated with a good prognosis. This subgroup specificity led us to hypothesize that YAP1 may be important for response to endocrine therapies, such as tamoxifen, extensively used for luminal A breast cancers. In a tamoxifen randomised patient material, absent YAP1 protein expression was associated with impaired tamoxifen response which was significant upon interaction analysis (p = 0.042). YAP1 downregulation resulted in increased progesterone receptor (PgR) expression and a delayed and weaker tamoxifen in support of the clinical data. Conclusions: Decreased YAP1 expression is an independent prognostic factor for recurrence in the less aggressive luminal A breast cancer subgroup, likely due to the decreased tamoxifen sensitivity conferred by YAP1 downregulation.
  •  
9.
  • Sproul, Duncan, et al. (author)
  • Tissue of origin determines cancer-associated CpG island promoter hypermethylation patterns
  • 2012
  • In: Genome Biology. - : BioMed Central. - 1465-6906 .- 1474-760X. ; 13:10
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Aberrant CpG island promoter DNA hypermethylation is frequently observed in cancer and is believed to contribute to tumor progression by silencing the expression of tumor suppressor genes. Previously, we observed that promoter hypermethylation in breast cancer reflects cell lineage rather than tumor progression and occurs at genes that are already repressed in a lineage-specific manner. To investigate the generality of our observation we analyzed the methylation profiles of 1,154 cancers from 7 different tissue types.RESULTS:We find that 1,009 genes are prone to hypermethylation in these 7 types of cancer. Nearly half of these genes varied in their susceptibility to hypermethylation between different cancer types. We show that the expression status of hypermethylation prone genes in the originator tissue determines their propensity to become hypermethylated in cancer; specifically, genes that are normally repressed in a tissue are prone to hypermethylation in cancers derived from that tissue. We also show that the promoter regions of hypermethylation-prone genes are depleted of repetitive elements and that DNA sequence around the same promoters is evolutionarily conserved. We propose that these two characteristics reflect tissue-specific gene promoter architecture regulating the expression of these hypermethylation prone genes in normal tissues.CONCLUSIONS:As aberrantly hypermethylated genes are already repressed in pre-cancerous tissue, we suggest that their hypermethylation does not directly contribute to cancer development via silencing. Instead aberrant hypermethylation reflects developmental history and the perturbation of epigenetic mechanisms maintaining these repressed promoters in a hypomethylated state in normal cells.
  •  
10.
  • Busch, Susann, et al. (author)
  • Loss of TGF beta Receptor Type 2 Expression Impairs Estrogen Response and Confers Tamoxifen Resistance
  • 2015
  • In: Cancer Research. - : American Association for Cancer Research. - 0008-5472 .- 1538-7445. ; 75:7, s. 1457-1469
  • Journal article (peer-reviewed)abstract
    • One third of the patients with estrogen receptor alpha (ER alpha)-positive breast cancer who are treated with the antiestrogen tamoxifen will either not respond to initial therapy or will develop drug resistance. Endocrine response involves crosstalk between ER alpha and TGF beta signaling, such that tamoxifen non-responsiveness or resistance in breast cancer might involve aberrant TGF beta signaling. In this study, we analyzed TGF beta receptor type 2 (TGFBR2) expression and correlated it with ER alpha status and phosphorylation in a cohort of 564 patients who had been randomized to tamoxifen or no-adjuvant treatment for invasive breast carcinoma. We also evaluated an additional four independent genetic datasets in invasive breast cancer. In all the cohorts we analyzed, we documented an association of low TGFBR2 protein and mRNA expression with tamoxifen resistance. Functional investigations confirmed that cell cycle or apoptosis responses to estrogen or tamoxifen in ER alpha-positive breast cancer cells were impaired by TGFBR2 silencing, as was ER alpha phosphorylation, tamoxifen-induced transcriptional activation of TGF beta, and upregulation of the multidrug resistance protein ABCG2. Acquisition of low TGFBR2 expression as a contributing factor to endocrine resistance was validated prospectively in a tamoxifen-resistant cell line generated by long-term drug treatment. Collectively, our results established a central contribution of TGF beta signaling in endocrine resistance in breast cancer and offered evidence that TGFBR2 can serve as an independent biomarker to predict treatment outcomes in ER alpha-positive forms of this disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 17
Type of publication
journal article (15)
research review (1)
Type of content
peer-reviewed (16)
Author/Editor
Landberg, Göran (3)
Jirström, Karin (3)
Franks, Paul W. (3)
Wareham, Nicholas J. (3)
Kuusisto, Johanna (3)
Laakso, Markku (3)
show more...
McCarthy, Mark I (3)
van Duijn, Cornelia ... (3)
Rotter, Jerome I. (3)
Barroso, Ines (3)
Hattersley, Andrew T (3)
Stål, Olle (2)
Overvad, Kim (2)
Kaaks, Rudolf (2)
Boeing, Heiner (2)
Tumino, Rosario (2)
Sacerdote, Carlotta (2)
Sánchez, Maria-José (2)
Barricarte, Aurelio (2)
Key, Timothy J (2)
Riboli, Elio (2)
Rolandsson, Olov (2)
Landberg, Göran, 196 ... (2)
Tuomi, Tiinamaija (2)
Soranzo, Nicole (2)
Rudan, Igor (2)
Deloukas, Panos (2)
Palli, Domenico (2)
Panico, Salvatore (2)
Grioni, Sara (2)
Navarro, Carmen (2)
Tjonneland, Anne (2)
Hansen, Torben (2)
Ridker, Paul M. (2)
Hu, Frank B. (2)
Chasman, Daniel I. (2)
Ikram, M. Arfan (2)
Amin, Najaf (2)
Chu, Audrey Y (2)
Langenberg, Claudia (2)
Boehnke, Michael (2)
Mohlke, Karen L (2)
Scott, Robert A (2)
Thorsteinsdottir, Un ... (2)
Stefansson, Kari (2)
Gieger, Christian (2)
Strauch, Konstantin (2)
Slimani, Nadia (2)
Luan, Jian'an (2)
Padmanabhan, Sandosh (2)
show less...
University
Lund University (11)
Karolinska Institutet (6)
Uppsala University (4)
Linköping University (4)
University of Gothenburg (3)
Umeå University (3)
show more...
Stockholm University (3)
Chalmers University of Technology (1)
Högskolan Dalarna (1)
Swedish University of Agricultural Sciences (1)
show less...
Language
English (17)
Research subject (UKÄ/SCB)
Medical and Health Sciences (13)
Natural sciences (5)
Engineering and Technology (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view