SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Singh Susmita K.) "

Search: WFRF:(Singh Susmita K.)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Klionsky, Daniel J., et al. (author)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • In: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Research review (peer-reviewed)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
3.
  • Aira, Naomi, et al. (author)
  • Species dependent impact of helminth-derived antigens on human macrophages infected with Mycobacterium tuberculosis: Direct effect on the innate anti-mycobacterial response
  • 2017
  • In: PLoS Neglected Tropical Diseases. - : PUBLIC LIBRARY SCIENCE. - 1935-2727 .- 1935-2735. ; 11:3
  • Journal article (peer-reviewed)abstract
    • Background In countries with a high prevalence of tuberculosis there is high coincident of helminth infections that might worsen disease outcome. While Mycobacterium tuberculosis (Mtb) gives rise to a pro-inflammatory Th1 response, a Th2 response is typical of helminth infections. A strong Th2 response has been associated with decreased protection against tuberculosis. Principal findings We investigated the direct effect of helminth-derived antigens on human macrophages, hypothesizing that helminths would render macrophages less capable of controlling Mtb. Measuring cytokine output, macrophage surface markers with flow cytometry, and assessing bacterial replication and phagosomal maturation revealed that antigens from different species of helminth directly affect macrophage responses to Mtb. Antigens from the tapeworm Hymenolepis diminuta and the nematode Trichuris muris caused an anti-inflammatory response with M2-type polarization, reduced macrophage phagosome maturation and ability to activate T cells, along with increased Mtb burden, especially in T. muris exposed cells which also induced the highest IL-10 production upon co-infection. However, antigens from the trematode Schistosoma mansoni had the opposite effect causing a decrease in IL-10 production, M1-type polarization and increased control of Mtb. Conclusion We conclude that, independent of any adaptive immune response, infection with helminth parasites, in a species-specific manner can influence the outcome of tuberculosis by either enhancing or diminishing the bactericidal function of macrophages.
  •  
4.
  • Singh, Susmita K., et al. (author)
  • HIV Interferes with Mycobacterium tuberculosis Antigen Presentation in Human Dendritic Cells
  • 2016
  • In: American Journal of Pathology. - : ELSEVIER SCIENCE INC. - 0002-9440 .- 1525-2191. ; 186:12, s. 3083-3093
  • Journal article (peer-reviewed)abstract
    • HIV coinfection is the most prominent risk factor for progression of Mycobacterium tuberculosis (Mtb) infection into active tuberculosis (TB) disease. The mechanisms behind the increased transition from latent to active TB in coinfected individuals have not been well elucidated at the cellular level. We hypothesized that HIV infection contributes to Mtb pathogenesis by interfering with the dendritic cell (DC) mediated immune control. Mtb-antigen processing and presentation are key events in the immune response against TB. Human immature DCs coinfected with HIV/Mtb had decreased expression of human leukocyte antigen antigen D related and the costimulatory molecules CD40, CD80, and CD86. In addition, Mtb-infected DCs triggered a significant release of the proinflammatory cytokines IL-6, IL-1 beta, and tumor necrosis factor-alpha, whereas coinfected DCs did not. To assess the DC antigen presentation capacity, we measured interferon-gamma from co-cultures of DCs and autologous Mtb antigen-specific CD4(+) T cells. Interferon-gamma release was significantly reduced when purified protein derivative- and Ag85B-specific CD4(+) T cells had been activated with coinfected DCs compared to Mtb-infected DCs, and this effect was attributed to Mtb antigen processing rather than peptide major histocompatibility complex class II loading. Evaluating autophagy as a measure of vesicular processing and maturation further revealed that HIV efficiently blocks initiation of this pathway during coinfection. Overall, our results demonstrate that HIV impairs Mtb antigen presentation in DCs, thereby suppressing an important cell linking innate and adaptive immune response in TB.
  •  
5.
  • Singh, Susmita K., et al. (author)
  • HIV Interferes with the Dendritic Cell-T Cell Axis of Macrophage Activation by Shifting Mycobacterium tuberculosis-Specific CD4 T Cells into a Dysfunctional Phenotype
  • 2019
  • In: Journal of Immunology. - : AMER ASSOC IMMUNOLOGISTS. - 0022-1767 .- 1550-6606. ; 202:3, s. 816-826
  • Journal article (peer-reviewed)abstract
    • HIV coinfection is the greatest risk factor for transition of latent Mycobacterium tuberculosis infection into active tuberculosis (TB). Epidemiological data reveal both the reduction and the impairment of M. tuberculosis-specific CD4 T cells, although the cellular link and actual mechanisms resulting in immune impairment/suppression need further characterization. M. tuberculosis-specific CD4 T cells play a central role in development of protective immunity against TB, in which they participate in the activation of macrophages through the dendritic cell (DC)-T cell axis. Using an in vitro priming system for generating Ag-specific T cells, we explored if HIV-M. tuberculosis-infected (coinfected) human DCs can dysregulate the M. tuberculosis-specific CD4 T cell phenotype and functionality and subsequently mediate the failure to control M. tuberculosis infection in macrophages. After coculture with coinfected DCs, M. tuberculosis Ag-specific CD4 T cells lost their ability to enhance control of M. tuberculosis infection in infected macrophages. Coinfection of DCs reduced proliferation of M. tuberculosis Ag-specific CD4 T cells without affecting their viability, led to increased expression of coinhibitory factors CTLA-4, PD-1, and Blimp-1, and decreased expression of costimulatory molecules CD40L, CD28, and ICOS on the T cells. Expression of the regulatory T cell markers FOXP3 and CD25, together with the immunosuppressive cytokines TGF-beta and IL-10, was also significantly increased by coinfection compared with M. tuberculosis single infection. Our data suggest a pattern in which HIV, through its effect on DCs, impairs the ability of M. tuberculosis-specific CD4 T cells to maintain a latent TB within human macrophages, which could play an early role in the subsequent development of TB.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view