SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Sjögren Olle 1943) "

Search: WFRF:(Sjögren Olle 1943)

  • Result 1-10 of 31
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Sjögren, Klara, 1970, et al. (author)
  • Liver-derived insulin-like growth factor I (IGF-I) is the principal source of IGF-I in blood but is not required for postnatal body growth in mice.
  • 1999
  • In: Proceedings of the National Academy of Sciences of the United States of America. - 0027-8424. ; 96:12, s. 7088-92
  • Journal article (peer-reviewed)abstract
    • The body growth of animals is regulated by growth hormone and IGF-I. The classical theory of this regulation is that most IGF-I in the blood originates in the liver and that body growth is controlled by the concentration of IGF-I in the blood. We have abolished IGF-I production in the livers of mice by using the Cre/loxP recombination system. These mice demonstrated complete inactivation of the IGF-I gene in the hepatocytes. Although the liver accounts for less than 5% of body mass, the concentration of IGF-I in the serum was reduced by 75%. This finding confirms that the liver is the principal source of IGF-I in the blood. However, the reduction in serum IGF-I concentration had no discernible effect on postnatal body growth. We conclude that postnatal body growth is preserved despite complete absence of IGF-I production by the hepatocytes.
  •  
2.
  • Bohlooly-Yeganeh, Mohammad, 1966, et al. (author)
  • Growth hormone overexpression in the central nervous system results in hyperphagia-induced obesity associated with insulin resistance and dyslipidemia.
  • 2005
  • In: Diabetes. - 0012-1797 .- 1939-327X. ; 54:1, s. 51-62
  • Journal article (peer-reviewed)abstract
    • It is well known that peripherally administered growth hormone (GH) results in decreased body fat mass. However, GH-deficient patients increase their food intake when substituted with GH, suggesting that GH also has an appetite stimulating effect. Transgenic mice with an overexpression of bovine GH in the central nervous system (CNS) were created to investigate the role of GH in CNS. This study shows that overexpression of GH in the CNS differentiates the effect of GH on body fat mass from that on appetite. The transgenic mice were not GH-deficient but were obese and showed increased food intake as well as increased hypothalamic expression of agouti-related protein and neuropeptide Y. GH also had an acute effect on food intake following intracerebroventricular injection of C57BL/6 mice. The transgenic mice were severely hyperinsulinemic and showed a marked hyperplasia of the islets of Langerhans. In addition, the transgenic mice displayed alterations in serum lipid and lipoprotein levels and hepatic gene expression. In conclusion, GH overexpression in the CNS results in hyperphagia-induced obesity indicating a dual effect of GH with a central stimulation of appetite and a peripheral lipolytic effect.
  •  
3.
  • Folkersen, Lasse, et al. (author)
  • Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals.
  • 2020
  • In: Nature metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 2:10, s. 1135-1148
  • Journal article (peer-reviewed)abstract
    • Circulating proteins are vital in human health and disease and are frequently used as biomarkers for clinical decision-making or as targets for pharmacological intervention. Here, we map and replicate protein quantitative trait loci (pQTL) for 90 cardiovascular proteins in over 30,000 individuals, resulting in 451 pQTLs for 85 proteins. For each protein, we further perform pathway mapping to obtain trans-pQTL gene and regulatory designations. We substantiate these regulatory findings with orthogonal evidence for trans-pQTLs using mouse knockdown experiments (ABCA1 and TRIB1) and clinical trial results (chemokine receptors CCR2 and CCR5), with consistent regulation. Finally, we evaluate known drug targets, and suggest new target candidates or repositioning opportunities using Mendelian randomization. This identifies 11 proteins with causal evidence of involvement in human disease that have not previously been targeted, including EGF, IL-16, PAPPA, SPON1, F3, ADM, CASP-8, CHI3L1, CXCL16, GDF15 and MMP-12. Taken together, these findings demonstrate the utility of large-scale mapping of the genetics of the proteome and provide a resource for future precision studies of circulating proteins in human health.
  •  
4.
  • Isaksson, Olle, 1943, et al. (author)
  • Metabolic functions of liver-derived (endocrine) insulin-like growth factor I.
  • 2001
  • In: Hormone research. - 0301-0163. ; 55 Suppl 2, s. 18-21
  • Journal article (peer-reviewed)abstract
    • Until now it has been difficult to determine the relative importance of locally produced (autocrine/paracrine) versus systemically derived (endocrine) insulin-like growth factor I (IGF-I) in the intact organism. We recently eliminated IGF-I production in the livers of mice using the Cre/loxP recombination system. These mice displayed a reduction in serum IGF-I levels of more than 80%, but demonstrated normal body growth, suggesting that autocrine/paracrine-acting IGF-I, but not endocrine-acting IGF-I, regulates body growth. Long-term metabolic studies of mice in which IGF-I production had been inactivated in the liver, have shown that the mice have decreased fat mass, but increased serum levels of insulin and cholesterol. Despite the marked increase in plasma insulin following glucose administration, the glucose elimination was not altered in these animals. Thus, the mice showed an adequately compensated insulin resistance. In conclusion, liver-derived or endocrine IGF-I is not required for post-natal statural growth, but seems to be of vital importance for normal carbohydrate and lipid metabolism.
  •  
5.
  • Isaksson, Olle, 1943, et al. (author)
  • The somatomedin hypothesis revisited in a transgenic model.
  • 2001
  • In: Growth hormone & IGF research : official journal of the Growth Hormone Research Society and the International IGF Research Society. - 1096-6374. ; 11 Suppl A
  • Journal article (peer-reviewed)abstract
    • Studies of insulin-like growth factor I (IGF-I) gene knockout mice models have clearly shown that IGF-I is necessary for prenatal as well as postnatal body growth in mice. Clinical studies of a patient with an IGF-I gene defect which caused complete absence of IGF-I, verified that it is important for intrauterine and postnatal growth. Recent studies of mice with liver-specific and inducible IGF-I gene knockout indicated that liver-derived IGF-I is not necessary for postnatal body growth, although serum IGF-I levels are decreased by more than 80% in these mice. Therefore, extrahepatic IGF-I is sufficient for maintenance of postnatal body growth in mice. Further investigations are needed to assess whether liver-derived circulating IGF-I is essential for other biological functions.
  •  
6.
  • Ohlsson, Claes, 1965, et al. (author)
  • The relative importance of endocrine versus autocrine/paracrine insulin-like growth factor-I in the regulation of body growth.
  • 2000
  • In: Pediatric nephrology (Berlin, Germany). - 0931-041X. ; 14:7, s. 541-3
  • Journal article (peer-reviewed)abstract
    • Body growth is regulated by growth hormone (GH) and insulin-like growth factor-I (IGF-I). The classical somatomedin hypothesis of this regulation is that most IGF-I in the blood originates in the liver and that body growth is controlled by the concentration of IGF-I in the blood. We have recently abolished IGF-I production in the livers of mice by using the Cre/loxP recombination system. These mice displayed a more than 75% reduction in serum IGF-I associated with increased serum levels of GH. In contrast, they demonstrated a normal postnatal growth, indicating that extrahepatic, autocrine/paracrine-acting IGF-I is the main determinant of postnatal growth. Thus, the "classical" somatomedin hypothesis needs revision. We propose the "dual somatomedin hypothesis" according to which: (1) autocrine/paracrine IGF-I is the main determinant of postnatal body growth and (2) liver-derived, endocrine-acting, IGF-I exerts negative feedback on GH secretion and possibly also exerts other effects on carbohydrate and lipid metabolism.
  •  
7.
  • Ohlsson, Claes, 1965, et al. (author)
  • The role of liver-derived insulin-like growth factor-I.
  • 2009
  • In: Endocrine reviews. - : The Endocrine Society. - 1945-7189 .- 0163-769X. ; 30:5, s. 494-535
  • Research review (peer-reviewed)abstract
    • IGF-I is expressed in virtually every tissue of the body, but with much higher expression in the liver than in any other tissue. Studies using mice with liver-specific IGF-I knockout have demonstrated that liver-derived IGF-I, constituting a major part of circulating IGF-I, is an important endocrine factor involved in a variety of physiological and pathological processes. Detailed studies comparing the impact of liver-derived IGF-I and local bone-derived IGF-I demonstrate that both sources of IGF-I can stimulate longitudinal bone growth. We propose here that liver-derived circulating IGF-I and local bone-derived IGF-I to some extent have overlapping growth-promoting effects and might have the capacity to replace each other (= redundancy) in the maintenance of normal longitudinal bone growth. Importantly, and in contrast to the regulation of longitudinal bone growth, locally derived IGF-I cannot replace (= lack of redundancy) liver-derived IGF-I for the regulation of a large number of other parameters including GH secretion, cortical bone mass, kidney size, prostate size, peripheral vascular resistance, spatial memory, sodium retention, insulin sensitivity, liver size, sexually dimorphic liver functions, and progression of some tumors. It is clear that a major role of liver-derived IGF-I is to regulate GH secretion and that some, but not all, of the phenotypes in the liver-specific IGF-I knockout mice are indirect, mediated via the elevated GH levels. All of the described multiple endocrine effects of liver-derived IGF-I should be considered in the development of possible novel treatment strategies aimed at increasing or reducing endocrine IGF-I activity.
  •  
8.
  •  
9.
  • Sjögren, Klara, 1970, et al. (author)
  • A model for tissue-specific inducible insulin-like growth factor-I (IGF-I) inactivation to determine the physiological role of liver-derived IGF-I.
  • 2002
  • In: Endocrine. - 0969-711X. ; 19:3, s. 249-56
  • Journal article (peer-reviewed)abstract
    • Insulin-like growth factor-I (IGF-I) has important growthpromoting and metabolic effects and is expressed in virtually every tissue of the body. The highest expression is found in the liver, but the physiological role of liver-derived IGF-I is unknown. It has been difficult to separate the endocrine effects of liver-derived IGF-I from the autocrine/paracrine effects of locally produced IGF-I in peripheral tissues. Therefore, we have developed a mouse model with a liver-specific inducible deletion of the IGF-I gene (LI-IGF-I-/- mouse). The LI-IGF-I-/- mouse has dramatically reduced (>80%) serum IGF-I levels, demonstrating that the major part of serum IGF-I is liver-derived. Surprisingly, LI-IGFI -/- mice demonstrate a normal appendicular skeletal growth up to at least 12 mo of age despite the dramatic decrease in circulating IGF-I levels, indicating that liver-derived IGF-I is not required for appendicular skeletal growth. However, the adult axial skeletal growth is reduced in the LI-IGF-I-/- mice. Furthermore, the amount of cortical bone is reduced due to decreased radial growth of the cortical bone, while the trabecular bone mineral density is unchanged in the LI-IGFI -/- mice. The decreased levels of circulating IGF-I are associated with increased serum levels of growth hormone (GH), indicating a role for liver-derived IGFI in the negative-feedback regulation of GH secretion. Measurements of factors regulating GH secretion in the pituitary and in the hypothalamus revealed an increased expression of GH-releasing-hormone (GHRH) and GHsecretagogue (GHS) receptors in the pituitary of LI-IGFI -/- mice. This in turn results in an increased sensitivity to systemically administered GHRH and GHS, demonstrating that the regulatory action of liver-derived IGF-I on GH secretion is at the pituitary rather than at the hypothalamic level. The liver is an important metabolic organ and LI-IGF-I-/- mice are markedly hyperinsulinemic and yet normoglycemic, consistent with an adequately compensated insulin resistance. Interestingly, LI-IGF-I-/- mice display a reduced age-dependent fat mass accumulation compared with control mice. Furthermore, LI-IGF-I-/- mice have increased blood pressure attributable to increased peripheral resistance indicating a role for liver-derived IGF-I in the regulation of blood pressure. In conclusion, liver-derived IGF-I is important for carbohydrate and lipid metabolism and for the regulation of GH secretion at the pituitary level. Furthermore, it regulates adult axial skeletal growth and cortical radial growth while it is not required for appendicular skeletal growth.
  •  
10.
  • Sjögren, Klara, 1970, et al. (author)
  • A transgenic model to determine the physiological role of liver-derived insulin-like growth factor I.
  • 2002
  • In: Minerva endocrinologica. - 0391-1977. ; 27:4, s. 299-311
  • Journal article (peer-reviewed)abstract
    • Insulin-like growth factor-I (IGF-I) has important growth promoting and metabolic effects and is expressed in virtually every tissue of the body. The highest expression is found in the liver but the physiological role of liver-derived IGF-I is unknown. It has been difficult to separate the endocrine effects of liver-derived IGF-I from the autocrine/paracrine effects of locally produced IGF-I in peripheral tissues. Therefore, we have developed a mouse model with a liver-specific inducible deletion of the IGF-I gene. The liver-IGF-I deficient mouse have dramatically reduced (>80%) serum IGF-I levels, demonstrating that the major part of serum IGF-I is liver-derived. Surprisingly, liver-IGF-I deficient mice demonstrate a normal appendicular skeletal growth up to at least 12 months of age despite the dramatic decrease in circulating IGF-I levels, indicating that liver-derived IGF-I is not required for appendicular skeletal growth. However, the adult axial skeletal growth is clearly reduced in the liver-IGF-I deficient mice. Furthermore, the amount of cortical bone is reduced due to decreased radial growth of the cortical bone while the amount of trabecular bone is unchanged in the liver-IGF-I deficient mice. The decreased levels of circulating IGF-I are associated with increased serum levels of growth hormone (GH), indicating a role for liver-derived IGF-I in the negative feedback regulation of GH secretion. Measurements of factors regulating GH-secretion in the pituitary and in the hypothalamus revealed an increased expression of growth hormone releasing hormone (GHRH) and growth hormone secretagogue (GHS) receptors in the pituitary of liver-IGF-I deficient mice. This in turn results in an increased sensitivity to systemically administered GHRH and GHS, demonstrating that the regulatory action of liver-derived IGF-I on GH secretion is at the pituitary rather than at the hypothalamic level. The liver is an important metabolic organ and liver-IGF-I deficient mice are markedly hyperinsulinemic and yet normoglycemic, consistent with an adequately compensated insulin resistance. Interestingly, liver-IGF-I deficient mice display a reduced age-dependent fat mass accumulation compared with control mice. In conclusion, liver-derived IGF-I is important for carbohydrate- and lipid-metabolism and for the regulation of GH-secretion at the pituitary level. Furthermore, it regulates adult axial skeletal growth and cortical radial growth while it is not required for appendicular skeletal growth.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 31
Type of publication
journal article (21)
book chapter (8)
book (1)
research review (1)
Type of content
peer-reviewed (20)
other academic/artistic (11)
Author/Editor
Ohlsson, Claes, 1965 (17)
Svensson, Johan, 196 ... (4)
Skrtic, Stanko, 1970 (2)
Ahren, Bo (2)
Bergström, Göran, 19 ... (2)
Wallenius, Ville, 19 ... (2)
show more...
Olsson, Bob, 1969 (2)
Engström, Gunnar (1)
Svensson, L (1)
Fick, Jerker (1)
Elmståhl, Sölve (1)
Landén, Mikael, 1966 (1)
Bergen, Sarah E (1)
Mölne, Johan, 1958 (1)
Park, S. (1)
Lind, Lars (1)
Wang, Qin (1)
Melander, Olle (1)
Nilsson, Peter M (1)
Smith, Gustav (1)
Davey Smith, George (1)
Sjögren, Marketa (1)
Zhang, Weidong (1)
Nilsson, Jan (1)
Sundström, Johan, Pr ... (1)
Chen, Yan (1)
Franks, Paul W. (1)
Vanderschueren, Dirk (1)
Pacini, G (1)
Johansson, Åsa (1)
Caidahl, Kenneth, 19 ... (1)
Orho-Melander, Marju (1)
Hamsten, Anders (1)
Ingelsson, Erik (1)
Ala-Korpela, Mika (1)
Sundler, Frank (1)
Enroth, Stefan, 1976 ... (1)
Svensson, Lennart (1)
Wallentin, Lars, 194 ... (1)
Waterton, John C (1)
Folkersen, Lasse (1)
Wu, Yang (1)
Movérare-Skrtic, Sof ... (1)
Kopchick, John J (1)
Gyllensten, Ulf (1)
Ingason, Andrés (1)
Werge, Thomas (1)
De Masi, Federico (1)
Hedman, Åsa K (1)
Fäldt, Jenny, 1971 (1)
show less...
University
University of Gothenburg (30)
Lund University (2)
Chalmers University of Technology (2)
Uppsala University (1)
University of Gävle (1)
Karolinska Institutet (1)
Language
English (19)
Swedish (11)
Undefined language (1)
Research subject (UKÄ/SCB)
Humanities (13)
Medical and Health Sciences (5)
Social Sciences (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view