SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Spence Christopher) "

Search: WFRF:(Spence Christopher)

  • Result 1-10 of 12
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Szatmari, Peter, et al. (author)
  • Mapping autism risk loci using genetic linkage and chromosomal rearrangements.
  • 2007
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 39:3, s. 319-328
  • Journal article (peer-reviewed)abstract
    • Autism spectrum disorders (ASDs) are common, heritable neurodevelopmental conditions. The genetic architecture of ASDs is complex, requiring large samples to overcome heterogeneity. Here we broaden coverage and sample size relative to other studies of ASDs by using Affymetrix 10K SNP arrays and 1,168 families with at least two affected individuals, performing the largest linkage scan to date while also analyzing copy number variation in these families. Linkage and copy number variation analyses implicate chromosome 11p12-p13 and neurexins, respectively, among other candidate loci. Neurexins team with previously implicated neuroligins for glutamatergic synaptogenesis, highlighting glutamate-related genes as promising candidates for contributing to ASDs.
  •  
2.
  • Ademuyiwa, Adesoji O., et al. (author)
  • Determinants of morbidity and mortality following emergency abdominal surgery in children in low-income and middle-income countries
  • 2016
  • In: BMJ Global Health. - : BMJ Publishing Group Ltd. - 2059-7908. ; 1:4
  • Journal article (peer-reviewed)abstract
    • Background: Child health is a key priority on the global health agenda, yet the provision of essential and emergency surgery in children is patchy in resource-poor regions. This study was aimed to determine the mortality risk for emergency abdominal paediatric surgery in low-income countries globally.Methods: Multicentre, international, prospective, cohort study. Self-selected surgical units performing emergency abdominal surgery submitted prespecified data for consecutive children aged <16 years during a 2-week period between July and December 2014. The United Nation's Human Development Index (HDI) was used to stratify countries. The main outcome measure was 30-day postoperative mortality, analysed by multilevel logistic regression.Results: This study included 1409 patients from 253 centres in 43 countries; 282 children were under 2 years of age. Among them, 265 (18.8%) were from low-HDI, 450 (31.9%) from middle-HDI and 694 (49.3%) from high-HDI countries. The most common operations performed were appendectomy, small bowel resection, pyloromyotomy and correction of intussusception. After adjustment for patient and hospital risk factors, child mortality at 30 days was significantly higher in low-HDI (adjusted OR 7.14 (95% CI 2.52 to 20.23), p<0.001) and middle-HDI (4.42 (1.44 to 13.56), p=0.009) countries compared with high-HDI countries, translating to 40 excess deaths per 1000 procedures performed.Conclusions: Adjusted mortality in children following emergency abdominal surgery may be as high as 7 times greater in low-HDI and middle-HDI countries compared with high-HDI countries. Effective provision of emergency essential surgery should be a key priority for global child health agendas.
  •  
3.
  • Arndt, D. S., et al. (author)
  • STATE OF THE CLIMATE IN 2017
  • 2018
  • In: Bulletin of The American Meteorological Society - (BAMS). - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 99:8, s. S1-S310
  • Research review (peer-reviewed)
  •  
4.
  • Arndt, D. S., et al. (author)
  • State of the Climate in 2016
  • 2017
  • In: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 98:8, s. S1-S280
  • Journal article (peer-reviewed)abstract
    • In 2016, the dominant greenhouse gases released into Earth's atmosphere-carbon dioxide, methane, and nitrous oxide-continued to increase and reach new record highs. The 3.5 +/- 0.1 ppm rise in global annual mean carbon dioxide from 2015 to 2016 was the largest annual increase observed in the 58-year measurement record. The annual global average carbon dioxide concentration at Earth's surface surpassed 400 ppm (402.9 +/- 0.1 ppm) for the first time in the modern atmospheric measurement record and in ice core records dating back as far as 800000 years. One of the strongest El Nino events since at least 1950 dissipated in spring, and a weak La Nina evolved later in the year. Owing at least in part to the combination of El Nino conditions early in the year and a long-term upward trend, Earth's surface observed record warmth for a third consecutive year, albeit by a much slimmer margin than by which that record was set in 2015. Above Earth's surface, the annual lower troposphere temperature was record high according to all datasets analyzed, while the lower stratospheric temperature was record low according to most of the in situ and satellite datasets. Several countries, including Mexico and India, reported record high annual temperatures while many others observed near-record highs. A week-long heat wave at the end of April over the northern and eastern Indian peninsula, with temperatures surpassing 44 degrees C, contributed to a water crisis for 330 million people and to 300 fatalities. In the Arctic the 2016 land surface temperature was 2.0 degrees C above the 1981-2010 average, breaking the previous record of 2007, 2011, and 2015 by 0.8 degrees C, representing a 3.5 degrees C increase since the record began in 1900. The increasing temperatures have led to decreasing Arctic sea ice extent and thickness. On 24 March, the sea ice extent at the end of the growth season saw its lowest maximum in the 37-year satellite record, tying with 2015 at 7.2% below the 1981-2010 average. The September 2016 Arctic sea ice minimum extent tied with 2007 for the second lowest value on record, 33% lower than the 1981-2010 average. Arctic sea ice cover remains relatively young and thin, making it vulnerable to continued extensive melt. The mass of the Greenland Ice Sheet, which has the capacity to contribute similar to 7 m to sea level rise, reached a record low value. The onset of its surface melt was the second earliest, after 2012, in the 37-year satellite record. Sea surface temperature was record high at the global scale, surpassing the previous record of 2015 by about 0.01 degrees C. The global sea surface temperature trend for the 21st century-to-date of +0.162 degrees C decade(-1) is much higher than the longer term 1950-2016 trend of +0.100 degrees C decade(-1). Global annual mean sea level also reached a new record high, marking the sixth consecutive year of increase. Global annual ocean heat content saw a slight drop compared to the record high in 2015. Alpine glacier retreat continued around the globe, and preliminary data indicate that 2016 is the 37th consecutive year of negative annual mass balance. Across the Northern Hemisphere, snow cover for each month from February to June was among its four least extensive in the 47-year satellite record. Continuing a pattern below the surface, record high temperatures at 20-m depth were measured at all permafrost observatories on the North Slope of Alaska and at the Canadian observatory on northernmost Ellesmere Island. In the Antarctic, record low monthly surface pressures were broken at many stations, with the southern annular mode setting record high index values in March and June. Monthly high surface pressure records for August and November were set at several stations. During this period, record low daily and monthly sea ice extents were observed, with the November mean sea ice extent more than 5 standard deviations below the 1981-2010 average. These record low sea ice values contrast sharply with the record high values observed during 2012-14. Over the region, springtime Antarctic stratospheric ozone depletion was less severe relative to the 1991-2006 average, but ozone levels were still low compared to pre-1990 levels. Closer to the equator, 93 named tropical storms were observed during 2016, above the 1981-2010 average of 82, but fewer than the 101 storms recorded in 2015. Three basins-the North Atlantic, and eastern and western North Pacific-experienced above-normal activity in 2016. The Australian basin recorded its least active season since the beginning of the satellite era in 1970. Overall, four tropical cyclones reached the Saffir-Simpson category 5 intensity level. The strong El Nino at the beginning of the year that transitioned to a weak La Nina contributed to enhanced precipitation variability around the world. Wet conditions were observed throughout the year across southern South America, causing repeated heavy flooding in Argentina, Paraguay, and Uruguay. Wetter-than-usual conditions were also observed for eastern Europe and central Asia, alleviating the drought conditions of 2014 and 2015 in southern Russia. In the United States, California had its first wetter-than-average year since 2012, after being plagued by drought for several years. Even so, the area covered by drought in 2016 at the global scale was among the largest in the post-1950 record. For each month, at least 12% of land surfaces experienced severe drought conditions or worse, the longest such stretch in the record. In northeastern Brazil, drought conditions were observed for the fifth consecutive year, making this the longest drought on record in the region. Dry conditions were also observed in western Bolivia and Peru; it was Bolivia's worst drought in the past 25 years. In May, with abnormally warm and dry conditions already prevailing over western Canada for about a year, the human-induced Fort McMurray wildfire burned nearly 590000 hectares and became the costliest disaster in Canadian history, with $3 billion (U.S. dollars) in insured losses.
  •  
5.
  • Caplan, R, et al. (author)
  • Psychiatric disorders in Children
  • 2008
  • In: Epilepsy. A Comprehensive Textbook. Engel J, Pedley TA, editors. 2nd ed.. - Philadelphia-New York : Lippincott – Raven Publishers.
  • Book chapter (other academic/artistic)
  •  
6.
  • Golub, Malgorzata, et al. (author)
  • Diel, seasonal, and inter-annual variation in carbon dioxide effluxes from lakes and reservoirs
  • 2023
  • In: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 18:3
  • Journal article (peer-reviewed)abstract
    • Accounting for temporal changes in carbon dioxide (CO2) effluxes from freshwaters remains a challenge for global and regional carbon budgets. Here, we synthesize 171 site-months of flux measurements of CO2 based on the eddy covariance method from 13 lakes and reservoirs in the Northern Hemisphere, and quantify dynamics at multiple temporal scales. We found pronounced sub-annual variability in CO2 flux at all sites. By accounting for diel variation, only 11% of site-months were net daily sinks of CO2. Annual CO2 emissions had an average of 25% (range 3%-58%) interannual variation. Similar to studies on streams, nighttime emissions regularly exceeded daytime emissions. Biophysical regulations of CO2 flux variability were delineated through mutual information analysis. Sample analysis of CO2 fluxes indicate the importance of continuous measurements. Better characterization of short- and long-term variability is necessary to understand and improve detection of temporal changes of CO2 fluxes in response to natural and anthropogenic drivers. Our results indicate that existing global lake carbon budgets relying primarily on daytime measurements yield underestimates of net emissions.
  •  
7.
  • Johansson, Linda C, 1983, et al. (author)
  • Structure of a photosynthetic reaction centre determined by serial femtosecond crystallography.
  • 2013
  • In: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 4
  • Journal article (peer-reviewed)abstract
    • Serial femtosecond crystallography is an X-ray free-electron-laser-based method with considerable potential to have an impact on challenging problems in structural biology. Here we present X-ray diffraction data recorded from microcrystals of the Blastochloris viridis photosynthetic reaction centre to 2.8Å resolution and determine its serial femtosecond crystallography structure to 3.5Å resolution. Although every microcrystal is exposed to a dose of 33MGy, no signs of X-ray-induced radiation damage are visible in this integral membrane protein structure.
  •  
8.
  • Kupitz, Christopher, et al. (author)
  • Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser
  • 2014
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 513:7517, s. 261-265
  • Journal article (peer-reviewed)abstract
    • Photosynthesis, a process catalysed by plants, algae and cyanobacteria converts sunlight to energy thus sustaining all higher life on Earth. Two large membrane protein complexes, photosystem I and II (PSI and PSII), act in series to catalyse the light-driven reactions in photosynthesis. PSII catalyses the light-driven water splitting process, which maintains the Earth's oxygenic atmosphere. In this process, the oxygen-evolving complex (OEC) of PSII cycles through five states, S0 to S4, in which four electrons are sequentially extracted from the OEC in four light-driven charge-separation events. Here we describe time resolved experiments on PSII nano/microcrystals from Thermosynechococcus elongatus performed with the recently developed technique of serial femtosecond crystallography. Structures have been determined from PSII in the dark S1 state and after double laser excitation (putative S3 state) at 5 and 5.5 Å resolution, respectively. The results provide evidence that PSII undergoes significant conformational changes at the electron acceptor side and at the Mn4CaO5 core of the OEC. These include an elongation of the metal cluster, accompanied by changes in the protein environment, which could allow for binding of the second substrate water molecule between the more distant protruding Mn (referred to as the 'dangler' Mn) and the Mn3CaOx cubane in the S2 to S3 transition, as predicted by spectroscopic and computational studies. This work shows the great potential for time-resolved serial femtosecond crystallography for investigation of catalytic processes in biomolecules.
  •  
9.
  • Lee, Ho-Hsien, et al. (author)
  • Expression, purification and crystallization of CTB-MPR, a candidate mucosal vaccine component against HIV-1
  • 2014
  • In: IUCrJ. - 2052-2525. ; 1:5, s. 305-317
  • Journal article (peer-reviewed)abstract
    • CTB-MPR is a fusion protein between the B subunit of cholera toxin (CTB) andthe membrane-proximal region of gp41 (MPR), the transmembrane envelopeprotein ofHuman immunodeficiency virus 1(HIV-1), and has previously beenshown to induce the production of anti-HIV-1 antibodies with antiviralfunctions. To further improve the design of this candidate vaccine, X-raycrystallography experiments were performed to obtain structural informationabout this fusion protein. Several variants of CTB-MPR were designed,constructed and recombinantly expressed inEscherichia coli. The first variantcontained a flexible GPGP linker between CTB and MPR, and yielded crystalsthat diffracted to a resolution of 2.3 A ̊, but only the CTB region was detectedin the electron-density map. A second variant, in which the CTB was directlyattached to MPR, was shown to destabilize pentamer formation. A thirdconstruct containing a polyalanine linker between CTB and MPR proved tostabilize the pentameric form of the protein during purification. The purificationprocedure was shown to produce a homogeneously pure and monodispersesample for crystallization. Initial crystallization experiments led to pseudo-crystals which were ordered in only two dimensions and were disordered inthe third dimension. Nanocrystals obtained using the same precipitant showedpromising X-ray diffraction to 5 A ̊resolution in femtosecond nanocrystallo-graphy experiments at the Linac Coherent Light Source at the SLAC NationalAccelerator Laboratory. The results demonstrate the utility of femtosecondX-ray crystallography to enable structural analysis based on nano/microcrystalsof a protein for which no macroscopic crystals ordered in three dimensions havebeen observed before.
  •  
10.
  • Liu, Wei, et al. (author)
  • Serial Femtosecond Crystallography of G Protein-Coupled Receptors
  • 2013
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 342:6165, s. 1521-1524
  • Journal article (peer-reviewed)abstract
    • X-ray crystallography of G protein-coupled receptors and other membrane proteins is hampered by difficulties associated with growing sufficiently large crystals that withstand radiation damage and yield high-resolution data at synchrotron sources. We used an x-ray free-electron laser (XFEL) with individual 50-femtosecond-duration x-ray pulses to minimize radiation damage and obtained a high-resolution room-temperature structure of a human serotonin receptor using sub-10-micrometer microcrystals grown in a membrane mimetic matrix known as lipidic cubic phase. Compared with the structure solved by using traditional microcrystallography from cryo-cooled crystals of about two orders of magnitude larger volume, the room-temperature XFEL structure displays a distinct distribution of thermal motions and conformations of residues that likely more accurately represent the receptor structure and dynamics in a cellular environment.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view