SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Stancik Ivan Andreas) "

Search: WFRF:(Stancik Ivan Andreas)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Kalantari, Aida, 1986, et al. (author)
  • Conversion of Glycerol to 3-Hydroxypropanoic Acid by Genetically Engineered Bacillus subtilis
  • 2017
  • In: Frontiers in Microbiology. - : Frontiers Media SA. - 1664-302X. ; 8:APR
  • Journal article (peer-reviewed)abstract
    • 3-Hydroxypropanoic acid (3-HP) is an important biomass-derivable platform chemical that can be converted into a number of industrially relevant compounds. There have been several attempts to produce 3-HP from renewable sources in cell factories, focusing mainly on Escherichia coli, Klebsiella pneumoniae, and Saccharomyces cerevisiae. Despite the significant progress made in this field, commercially exploitable large-scale production of 3-HP in microbial strains has still not been achieved. In this study, we investigated the potential of Bacillus subtilis as a microbial platform for bioconversion of glycerol into 3-HP. Our recombinant B. subtilis strains overexpress the two-step heterologous pathway containing glycerol dehydratase and aldehyde dehydrogenase from K. pneumoniae. Genetic engineering, driven by in silico optimization, and optimization of cultivation conditions resulted in a 3-HP titer of 10 g/L, in a standard batch cultivation. Our findings provide the first report of successful introduction of the biosynthetic pathway for conversion of glycerol into 3-HP in B. subtilis. With this relatively high titer in batch, and the robustness of B. subtilis in high density fermentation conditions, we expect that our production strains may constitute a solid basis for commercial production of 3-HP.
  •  
2.
  • Stancik, Ivan Andreas, et al. (author)
  • Serine/Threonine Protein Kinases from Bacteria, Archaea and Eukarya Share a Common Evolutionary Origin Deeply Rooted in the Tree of Life
  • 2018
  • In: Journal of Molecular Biology. - : Elsevier BV. - 0022-2836 .- 1089-8638. ; 430:1, s. 27-32
  • Journal article (peer-reviewed)abstract
    • The main family of serine/threonine/tyrosine protein kinases present in eukarya was defined and described by Hanks et al. in 1988 (Science, 241, 42–52). It was initially believed that these kinases do not exist in bacteria, but extensive genome sequencing revealed their existence in many bacteria. For historical reasons, the term “eukaryotic-type kinases” propagated in the literature to describe bacterial members of this protein family. Here, we argue that this term should be abandoned as a misnomer, and we provide several lines of evidence to support this claim. Our comprehensive phylostratigraphic analysis suggests that Hanks-type kinases present in eukarya, bacteria and archaea all share a common evolutionary origin in the lineage leading to the last universal common ancestor (LUCA). We found no evidence to suggest substantial horizontal transfer of genes encoding Hanks-type kinases from eukarya to bacteria. Moreover, our systematic structural comparison suggests that bacterial Hanks-type kinases resemble their eukaryal counterparts very closely, while their structures appear to be dissimilar from other kinase families of bacterial origin. This indicates that a convergent evolution scenario, by which bacterial kinases could have evolved a kinase domain similar to that of eukaryal Hanks-type kinases, is not very likely. Overall, our results strongly support a monophyletic origin of all Hanks-type kinases, and we therefore propose that this term should be adopted as a universal name for this protein family.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view