SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Storlien Leonard) "

Sökning: WFRF:(Storlien Leonard)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lelliott, Christopher J., et al. (författare)
  • Ablation of PGC-1beta results in defective mitochondrial activity, thermogenesis, hepatic function, and cardiac performance
  • 2006
  • Ingår i: PLoS biology. - : Public Library of Science (PLoS). - 1544-9173 .- 1545-7885. ; 4:11
  • Tidskriftsartikel (refereegranskat)abstract
    • The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1beta (PGC-1beta) has been implicated in important metabolic processes. A mouse lacking PGC-1beta (PGC1betaKO) was generated and phenotyped using physiological, molecular, and bioinformatic approaches. PGC1betaKO mice are generally viable and metabolically healthy. Using systems biology, we identified a general defect in the expression of genes involved in mitochondrial function and, specifically, the electron transport chain. This defect correlated with reduced mitochondrial volume fraction in soleus muscle and heart, but not brown adipose tissue (BAT). Under ambient temperature conditions, PGC-1beta ablation was partially compensated by up-regulation of PGC-1alpha in BAT and white adipose tissue (WAT) that lead to increased thermogenesis, reduced body weight, and reduced fat mass. Despite their decreased fat mass, PGC1betaKO mice had hypertrophic adipocytes in WAT. The thermogenic role of PGC-1beta was identified in thermoneutral and cold-adapted conditions by inadequate responses to norepinephrine injection. Furthermore, PGC1betaKO hearts showed a blunted chronotropic response to dobutamine stimulation, and isolated soleus muscle fibres from PGC1betaKO mice have impaired mitochondrial function. Lack of PGC-1beta also impaired hepatic lipid metabolism in response to acute high fat dietary loads, resulting in hepatic steatosis and reduced lipoprotein-associated triglyceride and cholesterol content. Altogether, our data suggest that PGC-1beta plays a general role in controlling basal mitochondrial function and also participates in tissue-specific adaptive responses during metabolic stress.
  •  
2.
  • Sörhede Winzell, Maria, et al. (författare)
  • Chronic glucokinase activation reduces glycaemia and improves glucose tolerance in high-fat diet fed mice.
  • 2011
  • Ingår i: European Journal of Pharmacology. - : Elsevier BV. - 1879-0712 .- 0014-2999. ; 663, s. 80-86
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucokinase (GK) plays a key role in maintaining glucose homeostasis by promoting insulin secretion from pancreatic beta cells and increasing hepatic glucose uptake. Here we investigate the effects of acute and chronic GK activation on glucose tolerance and insulin secretion in mice with diet-induced insulin resistance. In the acute study, a small molecule GK activator (GKA71) was administered to mice fed a high-fat diet for 8weeks. In the long-term study, GKA71 was provided in the diet for 4weeks to high-fat diet-fed mice. Glucose tolerance was measured after intravenous glucose administration, and insulin secretion was measured both in vivo and in vitro. Acute GK activation efficiently improved glucose tolerance in association with increased insulin secretion after intravenous glucose both in control and high-fat fed mice. Chronic GK activation significantly reduced basal plasma glucose and insulin, and improved glucose tolerance despite reduced insulin secretion after intravenous glucose, suggesting improved insulin sensitivity. Isolated islets from chronically GKA71-treated mice displayed augmented insulin secretion at 8.3mmol/l glucose, without affecting glucose oxidation. High-fat diet fed mice had reduced glycogen and increased triglyceride in liver compared to control mice, and these parameters were not altered by long-term GK activation. We conclude that GK activation in high-fat diet-fed mice potently reduces glycaemia and improves glucose tolerance, with combined effect both to stimulate insulin secretion from islets and improve insulin sensitivity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy