SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Strakosas Xenofon 1985 ) "

Search: WFRF:(Strakosas Xenofon 1985 )

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Strakosas, Xenofon, 1985-, et al. (author)
  • An electronic proton-trapping ion pump for selective drug delivery
  • 2021
  • In: Science Advances. - : American Association for the Advancement of Science. - 2375-2548. ; 7:5
  • Journal article (peer-reviewed)abstract
    • The organic electronic ion pump (OEIP) delivers ions and charged drugs from a source electrolyte, through a charge-selective membrane, to a target electrolyte upon an electric bias. OEIPs have successfully delivered γ-aminobutyric acid (GABA), a neurotransmitter that reduces neuronal excitations, in vitro, and in brain tissue to terminate induced epileptic seizures. However, during pumping, protons (H+), which exhibit higher ionic mobility than GABA, are also delivered and may potentially cause side effects due to large local changes in pH. To reduce the proton transfer, we introduced proton traps along the selective channel membrane. The traps are based on palladium (Pd) electrodes, which selectively absorb protons into their structure. The proton-trapping Pd-OEIP improves the overall performance of the current state-of-the-art OEIP, namely, its temporal resolution, efficiency, selectivity, and dosage precision.
  •  
2.
  • Donahue, Mary, et al. (author)
  • Polymers/PEDOT Derivatives for Bioelectronics
  • 2020. - 1
  • In: Redox Polymers for Energy and Nanomedicine. - : Royal Society of Chemistry. - 9781788018715 - 9781788019743 - 9781788019750 ; , s. 488-545
  • Book chapter (peer-reviewed)abstract
    • The advancement of bioelectronics depends greatly on new material development and engineering solutions. Redox polymers are promising candidates to contribute to this advancement of biointerfacing devices. For such devices to be clinically useful, they must fulfill an assortment of requirements, including biocompatibility, stability, mechanical compliancy and the ability to effectively monitor or influence biological systems. The use of redox polymers in bioelectronic research has demonstrated a great deal of potential in satisfying these constraints. In this chapter, we consider the advantageous aspects of polymer electronics for biomedical applications including electrophysiological recording, neuromodulation, biosensor technologies and drug delivery. Particular emphasis is given to PEDOT-based systems as these have demonstrated the highest degree of bioelectronic device success to date, however, other polymers are also discussed when pertinent.
  •  
3.
  • Gryszel, Maciej, et al. (author)
  • Vertical Organic Electrochemical Transistor Platforms for Efficient Electropolymerization of Thiophene Based Oligomers
  • 2024
  • In: Journal of Materials Chemistry C. - : ROYAL SOC CHEMISTRY. - 2050-7526 .- 2050-7534.
  • Journal article (peer-reviewed)abstract
    • Organic electrochemical transistors (OECTs) have emerged as promising candidates for various fields, including bioelectronics, neuromorphic computing, biosensors, and wearable electronics. OECTs operate in aqueous solutions, exhibit high amplification properties, and offer ion-to-electron signal transduction. The OECT channel consists of a conducting polymer, with PEDOT:PSS receiving the most attention to date. While PEDOT:PSS is highly conductive, and benefits from optimized protocols using secondary dopants and detergents, new p-type and n-type polymers are emerging with desirable material properties. Among these, low-oxidation potential oligomers are highly enabling for bioelectronics applications, however the polymers resulting from their polymerization lag far behind in conductivity compared with the established PEDOT:PSS. In this work we show that by careful design of the OECT geometrical characteristics, we can overcome this limitation and achieve devices that are on-par with transistors employing PEDOT:PSS. We demonstrate that the vertical architecture allows for facile electropolymerization of a family of trimers that are polymerized in very low oxidation potentials, without the need for harsh chemicals or secondary dopants. Vertical and planar OECTs are compared using various characterization methods. We show that vOECTs are superior platforms in general and propose that the vertical architecture can be expanded for the realization of OECTs for various applications.
  •  
4.
  • Tommasini, Giuseppina, et al. (author)
  • Seamless integration of bioelectronic interface in an animal model via in vivo polymerization of conjugated oligomers
  • 2022
  • In: Bioactive Materials. - : Elsevier BV. - 2452-199X. ; 10, s. 107-116
  • Journal article (peer-reviewed)abstract
    • Leveraging the biocatalytic machinery of living organisms for fabricating functional bioelectronic interfaces, in vivo, defines a new class of micro-biohybrids enabling the seamless integration of technology with living biological systems. Previously, we have demonstrated the in vivo polymerization of conjugated oligomers forming conductors within the structures of plants. Here, we expand this concept by reporting that Hydra, an invertebrate animal, polymerizes the conjugated oligomer ETE-S both within cells that expresses peroxidase activity and within the adhesive material that is secreted to promote underwater surface adhesion. The resulting conjugated polymer forms electronically conducting and electrochemically active μm-sized domains, which are inter-connected resulting in percolative conduction pathways extending beyond 100 μm, that are fully integrated within the Hydra tissue and the secreted mucus. Furthermore, the introduction and in vivo polymerization of ETE-S can be used as a biochemical marker to follow the dynamics of Hydra budding (reproduction) and regeneration. This work paves the way for well-defined self-organized electronics in animal tissue to modulate biological functions and in vivo biofabrication of hybrid functional materials and devices.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view