SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Strassert Jürgen F H) "

Sökning: WFRF:(Strassert Jürgen F H)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Irisarri, Iker, 1984-, et al. (författare)
  • Phylogenomic Insights into the Origin of Primary Plastids
  • 2021
  • Ingår i: Systematic Biology. - : Oxford University Press. - 1063-5157 .- 1076-836X. ; 71:1, s. 105-120
  • Tidskriftsartikel (refereegranskat)abstract
    • The origin of plastids was a major evolutionary event that paved the way for an astonishing diversification of photosynthetic eukaryotes. Plastids originated by endosymbiosis between a heterotrophic eukaryotic host and cyanobacteria, presumably in a common ancestor of the primary photosynthetic eukaryotes (Archaeplastida). A single origin of primary plastids is well supported by plastid evidence but not by nuclear phylogenomic analyses, which have consistently failed to recover the monophyly of Archaeplastida hosts. Importantly, plastid monophyly and nonmonophyletic hosts could be explained under scenarios of independent or serial eukaryote-to-eukaryote endosymbioses. Here, we assessed the strength of the signal for the monophyly of Archaeplastida hosts in four available phylogenomic data sets. The effect of phylogenetic methodology, data quality, alignment trimming strategy, gene and taxon sampling, and the presence of outlier genes were investigated. Our analyses revealed a lack of support for host monophyly in the shorter individual data sets. However, when analyzed together under rigorous data curation and complex mixture models, the combined nuclear data sets supported the monophyly of primary photosynthetic eukaryotes (Archaeplastida) and recovered a putative association with plastid-lacking Picozoa. This study represents an important step toward better understanding deep eukaryotic evolution and the origin of plastids.
  •  
2.
  • Radek, Renate, et al. (författare)
  • Exclusive Gut Flagellates of Serritermitidae Suggest a Major Transfaunation Event in Lower Termites : Description of Heliconympha glossotermitis gen. nov spec. nov.
  • 2018
  • Ingår i: Journal of Eukaryotic Microbiology. - : WILEY. - 1066-5234 .- 1550-7408. ; 65:1, s. 77-92
  • Tidskriftsartikel (refereegranskat)abstract
    • The guts of lower termites are inhabited by host-specific consortia of cellulose-digesting flagellate protists. In this first investigation of the symbionts of the family Serritermitidae, we found that Glossotermes oculatus and Serritermes serrifer each harbor similar parabasalid morphotypes: large Pseudotrichonympha-like cells, medium-sized Leptospironympha-like cells with spiraled bands of flagella, and small Hexamastix-like cells; oxymonadid flagellates were absent. Despite their morphological resemblance to Pseudotrichonympha and Leptospironympha, a SSU rRNA-based phylogenetic analysis identified the two larger, trichonymphid flagellates as deep-branching sister groups of Teranymphidae, with Leptospironympha sp. (the only spirotrichosomid with sequence data) in a moderately supported basal position. Only the Hexamastix-like flagellates are closely related to trichomonadid flagellates from Rhinotermitidae. The presence of two deep-branching lineages of trichonymphid flagellates in Serritermitidae and the absence of all taxa characteristic of the ancestral rhinotermitids underscores that the flagellate assemblages in the hindguts of lower termites were shaped not only by a progressive loss of flagellates during vertical inheritance but also by occasional transfaunation events, where flagellates were transferred horizontally between members of different termite families. In addition to the molecular phylogenetic analyses, we present a detailed morphological characterization of the new spirotrichosomid genus Heliconympha using light and electron microscopy.
  •  
3.
  • Schön, Max Emil, et al. (författare)
  • Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae
  • 2021
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The endosymbiotic origin of plastids from cyanobacteria gave eukaryotes photosynthetic capabilities and launched the diversification of countless forms of algae. These primary plastids are found in members of the eukaryotic supergroup Archaeplastida. All known archaeplastids still retain some form of primary plastids, which are widely assumed to have a single origin. Here, we used single-cell genomics from natural samples combined with phylogenomics to infer the evolutionary origin of the phylum Picozoa, a globally distributed but seemingly rare group of marine microbial heterotrophic eukaryotes. Strikingly, the analysis of 43 single-cell genomes shows that Picozoa belong to Archaeplastida, specifically related to red algae and the phagotrophic rhodelphids. These picozoan genomes support the hypothesis that Picozoa lack a plastid, and further reveal no evidence of an early cryptic endosymbiosis with cyanobacteria. These findings change our understanding of plastid evolution as they either represent the first complete plastid loss in a free-living taxon, or indicate that red algae and rhodelphids obtained their plastids independently of other archaeplastids.
  •  
4.
  • Strassert, Jürgen F. H., et al. (författare)
  • A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids
  • 2021
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • In modern oceans, eukaryotic phytoplankton is dominated by lineages with red algal-derived plastids such as diatoms, dinoflagellates, and coccolithophores. Despite the ecological importance of these groups and many others representing a huge diversity of forms and lifestyles, we still lack a comprehensive understanding of their evolution and how they obtained their plastids. New hypotheses have emerged to explain the acquisition of red algal-derived plastids by serial endosymbiosis, but the chronology of these putative independent plastid acquisitions remains untested. Here, we establish a timeframe for the origin of red algal-derived plastids under scenarios of serial endosymbiosis, using Bayesian molecular clock analyses applied on a phylogenomic dataset with broad sampling of eukaryote diversity. We find that the hypotheses of serial endosymbiosis are chronologically possible, as the stem lineages of all red plastid-containing groups overlap in time. This period in the Meso- and Neoproterozoic Eras set the stage for the later expansion to dominance of red algal-derived primary production in the contemporary oceans, which profoundly altered the global geochemical and ecological conditions of the Earth. There are several competing hypotheses for the acquisition of red algal-derived plastids by eukaryotic phytoplankton. Here, the authors use Bayesian molecular clock analyses to evaluate the chronological possibility of the proposed plastid origins and transmissions.
  •  
5.
  • Strassert, Jürgen F. H., et al. (författare)
  • New Phylogenomic Analysis of the Enigmatic Phylum Telonemia Further Resolves the Eukaryote Tree of Life
  • 2019
  • Ingår i: Molecular biology and evolution. - : OXFORD UNIV PRESS. - 0737-4038 .- 1537-1719. ; 36:4, s. 757-765
  • Tidskriftsartikel (refereegranskat)abstract
    • The resolution of the broad-scale tree of eukaryotes is constantly improving, but the evolutionary origin of several major groups remains unknown. Resolving the phylogenetic position of these "orphan" groups is important, especially those that originated early in evolution, because they represent missing evolutionary links between established groups. Telonemia is one such orphan taxon for which little is known. The group is composed of molecularly diverse biflagellated protists, often prevalent although not abundant in aquatic environments. Telonemia has been hypothesized to represent a deeply diverging eukaryotic phylum but no consensus exists as to where it is placed in the tree. Here, we established cultures and report the phylogenomic analyses of three new transcriptome data sets for divergent telonemid lineages. All our phylogenetic reconstructions, based on 248 genes and using site-heterogeneous mixture models, robustly resolve the evolutionary origin of Telonemia as sister to the Sar supergroup. This grouping remains well supported when as few as 60% of the genes are randomly subsampled, thus is not sensitive to the sets of genes used but requires a minimal alignment length to recover enough phylogenetic signal. Telonemia occupies a crucial position in the tree to examine the origin of Sar, one of the most lineage-rich eukaryote supergroups. We propose the moniker "TSAR" to accommodate this new mega-assemblage in the phylogeny of eukaryotes.
  •  
6.
  • Strassert, Jürgen F. H., et al. (författare)
  • Phylogeny, Evidence for a Cryptic Plastid, and Distribution of Chytriodinium Parasites (Dinophyceae) Infecting Copepods
  • 2019
  • Ingår i: Journal of Eukaryotic Microbiology. - : Wiley. - 1066-5234 .- 1550-7408. ; 66:4, s. 574-581
  • Tidskriftsartikel (refereegranskat)abstract
    • Spores of the dinoflagellate Chytriodinium are known to infest copepod eggs causing their lethality. Despite the potential to control the population of such an ecologically important host, knowledge about Chytriodinium parasites is limited: we know little about phylogeny, parasitism, abundance, or geographical distribution. We carried out genome sequence surveys on four manually isolated sporocytes from the same sporangium, which seemed to be attached to a copepod nauplius, to analyze the phylogenetic position of Chytriodinium based on SSU and concatenated SSU/LSU rRNA gene sequences, and also characterize two genes related to the plastidial heme pathway, hemL and hemY. The results suggest the presence of a cryptic plastid in Chytriodinium and a photosynthetic ancestral state of the parasitic Chytriodinium/Dissodinium clade. Finally, by mapping Tara Oceans V9 SSU amplicon data to the recovered SSU rRNA gene sequences from the sporocytes, we show that globally, Chytriodinium parasites are most abundant within the pico/nano- and mesoplankton of the surface ocean and almost absent within microplankton, a distribution indicating that they generally exist either as free-living spores or host-associated sporangia.
  •  
7.
  • Strassert, Jürgen F H, et al. (författare)
  • Single cell genomics of uncultured marine alveolates shows paraphyly of basal dinoflagellates
  • 2018
  • Ingår i: The ISME Journal. - : Macmillan Publishers Ltd.. - 1751-7362 .- 1751-7370. ; 12, s. 304-308
  • Tidskriftsartikel (refereegranskat)abstract
    • Marine alveolates (MALVs) are diverse and widespread early-branching dinoflagellates, but most knowledge of the group comes from a few cultured species that are generally not abundant in natural samples, or from diversity analyses of PCR-based environmental SSU rRNA gene sequences. To more broadly examine MALV genomes, we generated single cell genome sequences from seven individually isolated cells. Genes expected of heterotrophic eukaryotes were found, with interesting exceptions like presence of proteorhodopsin and vacuolar H+-pyrophosphatase. Phylogenetic analysis of concatenated SSU and LSU rRNA gene sequences provided strong support for the paraphyly of MALV lineages. Dinoflagellate viral nucleoproteins were found only in MALV groups that branched as sister to dinokaryotes. Our findings indicate that multiple independent origins of several characteristics early in dinoflagellate evolution, such as a parasitic life style, underlie the environmental diversity of MALVs, and suggest they have more varied trophic modes than previously thought.
  •  
8.
  • Tice, Alexander K., et al. (författare)
  • PhyloFisher : A phylogenomic package for resolving eukaryotic relationships
  • 2021
  • Ingår i: PLoS biology. - : Public Library of Science (PLoS). - 1544-9173 .- 1545-7885. ; 19:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Phylogenomic analyses of hundreds of protein-coding genes aimed at resolving phylogenetic relationships is now a common practice. However, no software currently exists that includes tools for dataset construction and subsequent analysis with diverse validation strategies to assess robustness. Furthermore, there are no publicly available high-quality curated databases designed to assess deep (>100 million years) relationships in the tree of eukaryotes. To address these issues, we developed an easy-to-use software package, PhyloFisher (https://github.com/TheBrownLab/PhyloFisher), written in Python 3. PhyloFisher includes a manually curated database of 240 protein-coding genes from 304 eukaryotic taxa covering known eukaryotic diversity, a novel tool for ortholog selection, and utilities that will perform diverse analyses required by state-of-the-art phylogenomic investigations. Through phylogenetic reconstructions of the tree of eukaryotes and of the Saccharomycetaceae clade of budding yeasts, we demonstrate the utility of the PhyloFisher workflow and the provided starting database to address phylogenetic questions across a large range of evolutionary time points for diverse groups of organisms. We also demonstrate that undetected paralogy can remain in phylogenomic "single-copy orthogroup" datasets constructed using widely accepted methods such as all vs. all BLAST searches followed by Markov Cluster Algorithm (MCL) clustering and application of automated tree pruning algorithms. Finally, we show how the PhyloFisher workflow helps detect inadvertent paralog inclusions, allowing the user to make more informed decisions regarding orthology assignments, leading to a more accurate final dataset.
  •  
9.
  • Waege, J., et al. (författare)
  • Microcapillary sampling of Baltic Sea copepod gut microbiomes indicates high variability among individuals and the potential for methane production
  • 2019
  • Ingår i: FEMS Microbiology Ecology. - : OXFORD UNIV PRESS. - 0168-6496 .- 1574-6941. ; 95:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The paradox of methane oversaturation in oxygenated surface water has been described in many pelagic systems and still raises the question of the source. Temora sp. and Acartia sp. commonly dominate the surface and subsurface waters of the central Baltic Sea. It is hypothesised that their gut microbiome at least partly contributes to the methane anomaly in this ecosystem. However, the potential pathway for this methane production remains unclear. Using a microcapillary technique, we successfully overcame the challenge of sampling the gut microbiome of copepods <1 mm. 16S rRNA gene amplicon sequencing revealed differences among the dominant bacterial communities associated with Temora sp. (Actinobacteria, Betaproteobacteria and Flavobacteriia) and Acartia sp. (Actinobacteria, Alphaproteobacteria and Betaproteobacteria) and the surrounding water (Proteobacteria, Cyanobacteria and Verrucomicrobia), but also intraspecific variability. In both copepods, gut-specific prokaryotic taxa and indicative species for methane production pathways (methanogenesis, dimethylsulfoniopropionate or methylphosphonate) were present. The relative abundance of archaea and methanogens was investigated using droplet digital polymerase chain reaction and showed a high variability among copepod individuals, underlining intra- and interspecific differences in copepod-associated prokaryotic communities. Overall, this work highlights that the guts of Temora sp. and Acartia sp. have the potential for methane production but are probably no hotspot.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy