SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Sullivan William M.) "

Search: WFRF:(Sullivan William M.)

  • Result 1-10 of 17
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Fresard, Laure, et al. (author)
  • Identification of rare-disease genes using blood transcriptome sequencing and large control cohorts
  • 2019
  • In: Nature Medicine. - : NATURE PUBLISHING GROUP. - 1078-8956 .- 1546-170X. ; 25:6, s. 911-919
  • Journal article (peer-reviewed)abstract
    • It is estimated that 350 million individuals worldwide suffer from rare diseases, which are predominantly caused by mutation in a single gene(1). The current molecular diagnostic rate is estimated at 50%, with whole-exome sequencing (WES) among the most successful approaches(2-5). For patients in whom WES is uninformative, RNA sequencing (RNA-seq) has shown diagnostic utility in specific tissues and diseases(6-8). This includes muscle biopsies from patients with undiagnosed rare muscle disorders(6,9), and cultured fibroblasts from patients with mitochondrial disorders(7). However, for many individuals, biopsies are not performed for clinical care, and tissues are difficult to access. We sought to assess the utility of RNA-seq from blood as a diagnostic tool for rare diseases of different pathophysiologies. We generated whole-blood RNA-seq from 94 individuals with undiagnosed rare diseases spanning 16 diverse disease categories. We developed a robust approach to compare data from these individuals with large sets of RNA-seq data for controls (n = 1,594 unrelated controls and n = 49 family members) and demonstrated the impacts of expression, splicing, gene and variant filtering strategies on disease gene identification. Across our cohort, we observed that RNA-seq yields a 7.5% diagnostic rate, and an additional 16.7% with improved candidate gene resolution.
  •  
3.
  • Christmas, Matthew, et al. (author)
  • Evolutionary constraint and innovation across hundreds of placental mammals
  • 2023
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 380:6643
  • Journal article (peer-reviewed)abstract
    • Zoonomia is the largest comparative genomics resource for mammals produced to date. By aligning genomes for 240 species, we identify bases that, when mutated, are likely to affect fitness and alter disease risk. At least 332 million bases (similar to 10.7%) in the human genome are unusually conserved across species (evolutionarily constrained) relative to neutrally evolving repeats, and 4552 ultraconserved elements are nearly perfectly conserved. Of 101 million significantly constrained single bases, 80% are outside protein-coding exons and half have no functional annotations in the Encyclopedia of DNA Elements (ENCODE) resource. Changes in genes and regulatory elements are associated with exceptional mammalian traits, such as hibernation, that could inform therapeutic development. Earth's vast and imperiled biodiversity offers distinctive power for identifying genetic variants that affect genome function and organismal phenotypes.
  •  
4.
  •  
5.
  • Kehoe, Laura, et al. (author)
  • Make EU trade with Brazil sustainable
  • 2019
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 364:6438, s. 341-
  • Journal article (other academic/artistic)
  •  
6.
  • Ebersole, Charles R., et al. (author)
  • Many Labs 5: Testing Pre-Data-Collection Peer Review as an Intervention to Increase Replicability
  • 2020
  • In: Advances in Methods and Practices in Psychological Science. - : Sage. - 2515-2467 .- 2515-2459. ; 3:3, s. 309-331
  • Journal article (peer-reviewed)abstract
    • Replication studies in psychological science sometimes fail to reproduce prior findings. If these studies use methods that are unfaithful to the original study or ineffective in eliciting the phenomenon of interest, then a failure to replicate may be a failure of the protocol rather than a challenge to the original finding. Formal pre-data-collection peer review by experts may address shortcomings and increase replicability rates. We selected 10 replication studies from the Reproducibility Project: Psychology (RP:P; Open Science Collaboration, 2015) for which the original authors had expressed concerns about the replication designs before data collection; only one of these studies had yielded a statistically significant effect (p < .05). Commenters suggested that lack of adherence to expert review and low-powered tests were the reasons that most of these RP:P studies failed to replicate the original effects. We revised the replication protocols and received formal peer review prior to conducting new replication studies. We administered the RP:P and revised protocols in multiple laboratories (median number of laboratories per original study = 6.5, range = 3-9; median total sample = 1,279.5, range = 276-3,512) for high-powered tests of each original finding with both protocols. Overall, following the preregistered analysis plan, we found that the revised protocols produced effect sizes similar to those of the RP:P protocols (Delta r = .002 or .014, depending on analytic approach). The median effect size for the revised protocols (r = .05) was similar to that of the RP:P protocols (r = .04) and the original RP:P replications (r = .11), and smaller than that of the original studies (r = .37). Analysis of the cumulative evidence across the original studies and the corresponding three replication attempts provided very precise estimates of the 10 tested effects and indicated that their effect sizes (median r = .07, range = .00-.15) were 78% smaller, on average, than the original effect sizes (median r = .37, range = .19-.50).
  •  
7.
  • Moshontz, Hannah, et al. (author)
  • The Psychological Science Accelerator: Advancing Psychology Through a Distributed Collaborative Network
  • 2018
  • In: Advances in Methods and Practices in Psychological Science. - : SAGE Publications. - 2515-2459 .- 2515-2467. ; 1:4, s. 501-515
  • Journal article (peer-reviewed)abstract
    • Concerns about the veracity of psychological research have been growing. Many findings in psychological science are based on studies with insufficient statistical power and nonrepresentative samples, or may otherwise be limited to specific, ungeneralizable settings or populations. Crowdsourced research, a type of large-scale collaboration in which one or more research projects are conducted across multiple lab sites, offers a pragmatic solution to these and other current methodological challenges. The Psychological Science Accelerator (PSA) is a distributed network of laboratories designed to enable and support crowdsourced research projects. These projects can focus on novel research questions or replicate prior research in large, diverse samples. The PSA’s mission is to accelerate the accumulation of reliable and generalizable evidence in psychological science. Here, we describe the background, structure, principles, procedures, benefits, and challenges of the PSA. In contrast to other crowdsourced research networks, the PSA is ongoing (as opposed to time limited), efficient (in that structures and principles are reused for different projects), decentralized, diverse (in both subjects and researchers), and inclusive (of proposals, contributions, and other relevant input from anyone inside or outside the network). The PSA and other approaches to crowdsourced psychological science will advance understanding of mental processes and behaviors by enabling rigorous research and systematic examination of its generalizability.
  •  
8.
  • Wilson, Rachel M., et al. (author)
  • Plant organic matter inputs exert a strong control on soil organic matter decomposition in a thawing permafrost peatland
  • 2022
  • In: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 820
  • Journal article (peer-reviewed)abstract
    • Peatlands are climate critical carbon (C) reservoirs that could become a C source under continued warming. A strong relationship between plant tissue chemistry and the soil organic matter (SOM) that fuels C gas emissions is inferred, but rarely examined at the molecular level. Here we compared Fourier transform infrared (FT-IR) spectroscopy measurements of solid phase functionalities in plants and SOM to ultra-high-resolution mass spectrometric analyses of plant and SOM water extracts across a palsa-bog-fen thaw and moisture gradient in an Arctic peatland. From these analyses we calculated the C oxidation state (NOSC), a measure which can be used to assess organic matter quality. Palsa plant extracts had the highest NOSC, indicating high quality, whereas extracts of Sphagnum, which dominated the bog, had the lowest NOSC. The percentage of plant compounds that are less bioavailable and accumulate in the peat, increases from palsa (25%) to fen (41%) to bog (47%), reflecting the pattern of percent Sphagnum cover. The pattern of NOSC in the plant extracts was consistent with the high number of consumed compounds in the palsa and low number of consumed compounds in the bog. However, in the FT-IR analysis of the solid phase bog peat, carbohydrate content was high implying high quality SOM. We explain this discrepancy as the result of low solubilization of bog SOM facilitated by the low pH in the bog which makes the solid phase carbohydrates less available to microbial decomposition. Plant-associated condensed aromatics, tannins, and lignin-like compounds declined in the unsaturated palsa peat indicating decomposition, but lignin-like compounds accumulated in the bog and fen peat where decomposition was presumably inhibited by the anaerobic conditions. A molecular-level comparison of the aboveground C sources and peat SOM demonstrates that climate-associated vegetation shifts in peatlands are important controls on the mechanisms underlying changing C gas emissions.
  •  
9.
  • Currier, Russell W, et al. (author)
  • The evolution of infectious agents in relation to sex in animals and humans: brief discussions of some individual organisms.
  • 2011
  • In: Annals of the New York Academy of Sciences. - : Wiley. - 1749-6632 .- 0077-8923. ; 1230, s. 74-107, s. 74-107
  • Research review (peer-reviewed)abstract
    • The following series of concise summaries addresses the evolution of infectious agents in relation to sex in animals and humans from the perspective of three specific questions: (1) what have we learned about the likely origin and phylogeny, up to the establishment of the infectious agent in the genital econiche, including the relative frequency of its sexual transmission; (2) what further research is needed to provide additional knowledge on some of these evolutionary aspects; and (3) what evolutionary considerations might aid in providing novel approaches to the more practical clinical and public health issues facing us currently and in the future?
  •  
10.
  • Muus, Christoph, et al. (author)
  • Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics
  • 2021
  • In: Nature Medicine. - : Springer Science and Business Media LLC. - 1078-8956 .- 1546-170X. ; 27:3, s. 546-559
  • Journal article (peer-reviewed)abstract
    • Angiotensin-converting enzyme 2 (ACE2) and accessory proteases (TMPRSS2 and CTSL) are needed for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cellular entry, and their expression may shed light on viral tropism and impact across the body. We assessed the cell-type-specific expression of ACE2, TMPRSS2 and CTSL across 107 single-cell RNA-sequencing studies from different tissues. ACE2, TMPRSS2 and CTSL are coexpressed in specific subsets of respiratory epithelial cells in the nasal passages, airways and alveoli, and in cells from other organs associated with coronavirus disease 2019 (COVID-19) transmission or pathology. We performed a meta-analysis of 31 lung single-cell RNA-sequencing studies with 1,320,896 cells from 377 nasal, airway and lung parenchyma samples from 228 individuals. This revealed cell-type-specific associations of age, sex and smoking with expression levels of ACE2, TMPRSS2 and CTSL. Expression of entry factors increased with age and in males, including in airway secretory cells and alveolar type 2 cells. Expression programs shared by ACE2(+)TMPRSS2(+) cells in nasal, lung and gut tissues included genes that may mediate viral entry, key immune functions and epithelial-macrophage cross-talk, such as genes involved in the interleukin-6, interleukin-1, tumor necrosis factor and complement pathways. Cell-type-specific expression patterns may contribute to the pathogenesis of COVID-19, and our work highlights putative molecular pathways for therapeutic intervention. An integrated analysis of over 100 single-cell and single-nucleus transcriptomics studies illustrates severe acute respiratory syndrome coronavirus 2 viral entry gene coexpression patterns across different human tissues, and shows association of age, smoking status and sex with viral entry gene expression in respiratory cell populations.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view