SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Sun Changqing) "

Search: WFRF:(Sun Changqing)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Deng, Min, et al. (author)
  • Genome-wide association analyses in Han Chinese identify two new susceptibility loci for amyotrophic lateral sclerosis
  • 2013
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 45:6, s. 697-
  • Journal article (peer-reviewed)abstract
    • To identify susceptibility genes for amyotrophic lateral sclerosis (ALS), we conducted a genome-wide association study (GWAS) in 506 individuals with sporadic ALS and 1,859 controls of Han Chinese ancestry. Ninety top SNPs suggested by the current GWAS and 6 SNPs identified by previous GWAS were analyzed in an independent cohort of 706 individuals with ALS and 1,777 controls of Han Chinese ancestry. We discovered two new susceptibility loci for ALS at 1q32 (CAMK1G, rs6703183, P-combined = 2.92 x 10(-8), odds ratio (OR) = 1.31) and 22p11 (CABIN1 and SUSD2, rs8141797, P-combined = 2.35 x 10(-9), OR = 1.52). These two loci explain 12.48% of the overall variance in disease risk in the Han Chinese population. We found no association evidence for the previously reported loci in the Han Chinese population, suggesting genetic heterogeneity of disease susceptibility for ALS between ancestry groups. Our study identifies two new susceptibility loci and suggests new pathogenic mechanisms of ALS.
  •  
2.
  • Ma, Fei, et al. (author)
  • Association of Leukocyte Telomere Length with Mild Cognitive Impairment and Alzheimer's Disease : Role of Folate and Homocysteine
  • 2019
  • In: Dementia and Geriatric Cognitive Disorders. - : S. Karger AG. - 1420-8008 .- 1421-9824. ; 48:1-2, s. 56-67
  • Journal article (peer-reviewed)abstract
    • Background: Leukocyte telomere length (LTL) is associated with the aging process and age-related degenerative diseases. The relation of peripheral blood LTL to mild cognitive impairment (MCI) and Alzheimer's disease (AD) and the role of folate and homocysteine (Hcy) in this relation remain unclear.Objectives: We aimed to investigate the association between LTL and the risks of MCI/AD, and to explore whether folate and Hcy may play a role in this association.Methods: This case-control study included 129 MCI subjects, 131 AD patients and 134 healthy controls. LTL was assessed using real-time polymerase chain reaction assay. Serum folate levels were tested by chemiluminescence enzyme immunoassay, and serum Hcy levels were measured using the enzymatic cycling method. Data were analyzed using multivariate logistic regression and multivariable linear regression with adjustment for potential confounders.Results: The mean LTL was 1.56 +/- 0.25 in controls, 1.44 +/- 0.23 in MCI, and 1.28 +/- 0.28 in AD patients (p< 0.01). In multivariate logistic regression, subjects in the longest LTL tertile had lower OR for MCI (OR 0.246; 95% CI 0.101-0.597) and AD (OR 0.123; 95% CI 0.044-0.345) in comparison to subjects in the shortest tertile. Shorter LTL was dose-dependently related to the ORs of MCI and AD. Further, serum folate concentration was positively associated with LTL (p < 0.01), while serum Hcy level was negatively associated with LTL (p < 0.05). In stratified analyses, LTL-MCI/AD association varied by serum folate and Hcy level. Conclusions: Shorter LTL is associated with the risks of MCI/AD. Folate and Hcy might play an important role in this association.
  •  
3.
  •  
4.
  • Xu, Bo, et al. (author)
  • Tailor-Making Low-Cost Spiro[fluorene-9,9′-xanthene]-Based 3D Oligomers for Perovskite Solar Cells
  • 2017
  • In: Chem. - : Elsevier. - 2451-9308 .- 2451-9294. ; 2:5, s. 676-687
  • Journal article (peer-reviewed)abstract
    • The power-conversion efficiencies (PCEs) of perovskite solar cells (PSCs) have increased rapidly from about 4% to 22% during the past few years. One of the major challenges for further improvement of the efficiency of PSCs is the lack of sufficiently good hole transport materials (HTMs) to efficiently scavenge the photogenerated holes and aid the transport of the holes to the counter-electrode in the PSCs. In this study, we tailor-made two low-cost spiro[fluorene-9,9′-xanthene] (SFX)-based 3D oligomers, termed X54 and X55, by using a one-pot synthesis approach for PSCs. One of the HTMs, X55, gives a much deeper HOMO level and a higher hole mobility and conductivity than the state-of-the-art HTM, Spiro-OMeTAD. PSC devices based on X55 as the HTM show a very impressive PCE of 20.8% under 100 mW·cm−2 AM1.5G solar illumination, which is much higher than the PCE of the reference devices based on Spiro-OMeTAD (18.8%) and X54 (13.6%) under the same conditions.
  •  
5.
  • Zhang, Jinbao, et al. (author)
  • Incorporation of Counter Ions in Organic Molecules : New Strategy in Developing Dopant-Free Hole Transport Materials for Efficient Mixed-Ion Perovskite Solar Cells
  • 2017
  • In: Advanced Energy Materials. - : WILEY-V C H VERLAG GMBH. - 1614-6832 .- 1614-6840. ; 7:14
  • Journal article (peer-reviewed)abstract
    • Hole transport matertial (HTM) as charge selective layer in perovskite solar cells (PSCs) plays an important role in achieving high power conversion efficiency (PCE). It is known that the dopants and additives are necessary in the HTM in order to improve the hole conductivity of the HTM as well as to obtain high efficiency in PSCs, but the additives can potentially induce device instability and poor device reproducibility. In this work a new strategy to design dopant-free HTMs has been presented by modifying the HTM to include charged moieties which are accompanied with counter ions. The device based on this ionic HTM X44 dos not need any additional doping and the device shows an impressive PCE of 16.2%. Detailed characterization suggests that the incorporated counter ions in X44 can significantly affect the hole conductivity and the homogeneity of the formed HTM thin film. The superior photovoltaic performance for X44 is attributed to both efficient hole transport and effective interfacial hole transfer in the solar cell device. This work provides important insights as regards the future design of new and efficient dopant free HTMs for photovotaics or other optoelectronic applications.
  •  
6.
  • Zhang, Jinbao, et al. (author)
  • The Importance of Pendant Groups on Triphenylamine-Based Hole Transport Materials for Obtaining Perovskite Solar Cells with over 20% Efficiency
  • 2018
  • In: Advanced Energy Materials. - : Wiley. - 1614-6832 .- 1614-6840. ; 18:2
  • Journal article (peer-reviewed)abstract
    • Tremendous progress has recently been achieved in the field of perovskite solar cells (PSCs) as evidenced by impressive power conversion efficiencies (PCEs); but the high PCEs of >20% in PSCs has so far been mostly achieved by using the hole transport material (HTM) spiro-OMeTAD; however, the relatively low conductivity and high cost of spiro-OMeTAD significantly limit its potential use in large-scale applications. In this work, two new organic molecules with spiro[fluorene-9,9-xanthene] (SFX)-based pendant groups, X26 and X36, have been developed as HTMs. Both X26 and X36 present facile syntheses with high yields. It is found that the introduced SFX pendant groups in triphenylamine-based molecules show significant influence on the conductivity, energy levels, and thin-film surface morphology. The use of X26 as HTM in PSCs yields a remarkable PCE of 20.2%. In addition, the X26-based devices show impressive stability maintaining a high PCE of 18.8% after 5 months of aging in controlled (20%) humidity in the dark. We believe that X26 with high device PCEs of >20% and simple synthesis show a great promise for future application in PSCs, and that it represents a useful design platform for designing new charge transport materials for optoelectronic applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view