SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Susi Toma) "

Search: WFRF:(Susi Toma)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Amati, M., et al. (author)
  • Scanning photoelectron spectromicroscopy : From static to operando studies of functional materials
  • 2023
  • In: Journal of Electron Spectroscopy and Related Phenomena. - 0368-2048. ; 265
  • Journal article (peer-reviewed)abstract
    • The scanning photoelectron microscope (SPEM), developed more than 30 years ago, has undergone numerous technical developments, providing an incredibly vast kind of feasible sample environments, which span from the traditional high spatial resolution core level based chemical analysis to insitu and operando complex experiments, including also electrochemical setups and operational electronic devices at various temperatures. Another important step ahead is overcoming the so-called pressure gap for operando studies, recently extended to near ambient values by building special environmental cells. Using recent results of conventional and unconventional experiments, obtained with SPEM at the ESCA Microscopy beamline at Elettra Sincrotrone Trieste the present review demonstrates the current potential of this type of photoelectron spectromicroscopy to explore the interfacial properties of functional materials with high spatial resolution.
  •  
2.
  • Mortensen, Jens Jorgen, et al. (author)
  • GPAW: An open Python package for electronic structure calculations
  • 2024
  • In: Journal of Chemical Physics. - 1089-7690 .- 0021-9606. ; 160:9
  • Journal article (peer-reviewed)abstract
    • We review the GPAW open-source Python package for electronic structure calculations. GPAW is based on the projector-augmented wave method and can solve the self-consistent density functional theory (DFT) equations using three different wave-function representations, namely real-space grids, plane waves, and numerical atomic orbitals. The three representations are complementary and mutually independent and can be connected by transformations via the real-space grid. This multi-basis feature renders GPAW highly versatile and unique among similar codes. By virtue of its modular structure, the GPAW code constitutes an ideal platform for the implementation of new features and methodologies. Moreover, it is well integrated with the Atomic Simulation Environment (ASE), providing a flexible and dynamic user interface. In addition to ground-state DFT calculations, GPAW supports many-body GW band structures, optical excitations from the Bethe-Salpeter Equation, variational calculations of excited states in molecules and solids via direct optimization, and real-time propagation of the Kohn-Sham equations within time-dependent DFT. A range of more advanced methods to describe magnetic excitations and non-collinear magnetism in solids are also now available. In addition, GPAW can calculate non-linear optical tensors of solids, charged crystal point defects, and much more. Recently, support for graphics processing unit (GPU) acceleration has been achieved with minor modifications to the GPAW code thanks to the CuPy library. We end the review with an outlook, describing some future plans for GPAW.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view