SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Suvanam Sethu Saveda) "

Sökning: WFRF:(Suvanam Sethu Saveda)

  • Resultat 1-10 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chulapakorn, Thawatchart, 1988-, et al. (författare)
  • Impact of H-uptake by forming gas annealing and ion implantation on photoluminescence of Si-nanoparticles
  • 2018
  • Ingår i: Physica Status Solidi (a) applications and materials science. - : John Wiley & Sons. - 1862-6300 .- 1862-6319. ; 215:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Silicon nanoparticles (SiNPs) are formed by implanting 70 keV Si+ into a SiO2-film and subsequent thermal annealing. SiNP samples are further annealed in forming gas. Another group of samples containing SiNP is implanted by 7.5 keV H+ and subsequently annealed in N2-atmosphere at 450 °C to reduce implantation damage. Nuclear reaction analysis (NRA) is employed to establish depth profiles of the H-concentration. Enhanced hydrogen concentrations are found close to the SiO2surface, with particularly high concentrations for the as-implanted SiO2. However, no detectable uptake of hydrogen is observed by NRA for samples treated by forming gas annealing (FGA). H-concentrations detected after H-implantation follow calculated implantation profiles. Photoluminescence (PL) spectroscopy is performed at room temperature to observe the SiNP PL. Whereas FGA is found to increase PL under certain conditions, i.e., annealing at high temperatures, increasing implantation fluence of H reduces the SiNP PL. Hydrogen implantation also introduces additional defect PL. After low-temperature annealing, the SiNP PL is found to improve, but the process is not found equivalently efficient as conventional FGA.
  •  
2.
  • Chulapakorn, Thawatchart, 1988-, et al. (författare)
  • Influence of Swift Heavy Ion Irradiation on the Photoluminescence of Si-nanoparticles and Defects in SiO2
  • 2017
  • Ingår i: Nanotechnology. - : IOP PUBLISHING LTD. - 0957-4484 .- 1361-6528. ; 28:37
  • Tidskriftsartikel (refereegranskat)abstract
    • The influence of swift heavy ion (SHI) irradiation on the photoluminescence (PL) of silicon nanoparticles (SiNPs) and defects in SiO2-film is investigated. SiNPs were formed by implantation of 70 keV Si+ and subsequent thermal annealing to produce optically active SiNPs and to remove implantation-induced defects. Seven different ion species with energy between 3-36 MeV and fluence from 10(11)-10(14) cm(-2) were employed for irradiation of the implanted samples prior to the thermal annealing. Induced changes in defect and SiNP PL were characterized and correlated with the specific energy loss of the employed SHIs. We find that SHI irradiation, performed before the thermal annealing process, affects both defect and SiNP PL. The change of defect and SiNP PL due to SHI irradiation is found to show a threshold-like behaviour with respect to the electronic stopping power, where a decrease in defect PL and an anticorrelated increase in SiNP PL after the subsequent thermal annealing are observed for electronic stopping exceeding 3-5 keV nm(-1). PL intensities are also compared as a function of total energy deposition and nuclear energy loss. The observed effects can be explained by ion track formation as well as a different type of annealing mechanisms active for SHI irradiation compared to the thermal annealing.
  •  
3.
  •  
4.
  • Chulapakorn, Thawatchart, 1988-, et al. (författare)
  • MeV ion irradiation effects on the luminescence properties of Si-implanted SiO2-thin films
  • 2016
  • Ingår i: Physica Status Solidi (C) Current Topics in Solid State Physics. - : Wiley-VCH Verlagsgesellschaft. - 1862-6351 .- 1610-1634 .- 1610-1642. ; 13:10-12, s. 921-926
  • Tidskriftsartikel (refereegranskat)abstract
    • The effects of MeV heavy ion irradiation at varying fluence and flux on excess Si, introduced in SiO2 by keV ion implantation, are investigated by photoluminescence (PL). From the PL peak wavelength (λ) and decay lifetime (τ), two PL sources are distinguished: i) quasi-direct recombination of excitons of Si-nanoparticles (SiNPs), appearing after thermal annealing (λ > 720 nm, τ ∼ μs), and ii) fast-decay PL, possibly due to oxide-related defects (λ ∼ 575-690 nm, τ ∼ ns). The fast-decay PL (ii) observed before and after ion irradiation is induced by ion implantation. It is found that this fast-decay luminescence decreases for higher irradiation fluence of MeV heavy ions. After thermal annealing (forming SiNPs), the SiNP PL is reduced for samples irradiated by MeV heavy ions but found to stabilize at higher level for higher irradiation flux; the (ii) band vanishes as a result of annealing. The results are discussed in terms of the influence of electronic and nuclear stopping powers.
  •  
5.
  • Chulapakorn, Thawatchart, 1988-, et al. (författare)
  • Si-nanoparticle synthesis using ion implantation and MeV ion irradiation
  • 2015
  • Ingår i: Physica Status Solidi (C) Current Topics in Solid State Physics. - : Wiley-VCH Verlagsgesellschaft. - 1862-6351.
  • Tidskriftsartikel (refereegranskat)abstract
    • A dielectric matrix with embedded Si-nanoparticles may show strong luminescence depending on nanoparticles size, surface properties, Si-excess concentration and matrix type. Ion implantation of Si ions with energies of a few tens to hundreds of keV in a SiO2 matrix followed by thermal annealing was identified as a powerful method to form such nanoparticles. The aim of the present work is to optimize the synthesis of Si-nanoparticles produced by ion implantation in SiO2 by employing MeV ion irradiation as an additional annealing process. The luminescence properties are measured by spectrally resolved photoluminescence including PL lifetime measurement, while X-ray reflectometry, atomic force microscopy and ion beam analysis are used to characterize the nanoparticle formation process. The results show that the samples implanted at 20%-Si excess atomic concentration display the highest luminescence and that irradiation of 36 MeV 127I ions affects the luminosity in terms of wavelength and intensity. It is also demonstrated that the nanoparticle luminescence lifetime decreases as a function of irradiation fluence.
  •  
6.
  • Englund, Sven, et al. (författare)
  • Antimony-Doped Tin Oxide as Transparent Back Contact in Cu2ZnSnS4 Thin-Film Solar Cells
  • 2019
  • Ingår i: Physica Status Solidi (a) applications and materials science. - : Wiley. - 1862-6300 .- 1862-6319. ; 216:22
  • Tidskriftsartikel (refereegranskat)abstract
    • Antimony-doped tin oxide (Sn2O3:Sb, ATO) is investigated as a transparent back contact for Cu2ZnSnS4 (CZTS) thin-film solar cells. The stability of the ATO under different anneal conditions and the effect from ATO on CZTS absorber growth are studied. It is found that ATO directly exposed to sulfurizing anneal atmosphere reacts with S, but when covered by CZTS, it does not deteriorate when annealed at T < 550 degrees C. The electrical properties of ATO are even found to improve when CZTS is annealed at T = 534 degrees C. At T = 580 degrees C, it is found that ATO reacts with S and degrades. Analysis shows repeatedly that ATO affects the absorber growth as large amounts of Sn-S secondary compounds are found on the absorber surfaces. Time-resolved anneal series show that these compounds form early during anneal and evaporate with time to leave pinholes behind. Device performance can be improved by addition of Na prior to annealing. The best CZTS device on ATO back contact herein has an efficiency of 2.6%. As compared with a reference on a Mo back contact, a similar open-circuit voltage and short-circuit current density are achieved, but a lower fill factor is measured.
  •  
7.
  • Hallén, Anders, et al. (författare)
  • Passivation of SiC device surfaces by aluminum oxide
  • 2014
  • Ingår i: IOP Conference Series. - 1757-8981 .- 1757-899X. ; 56:1, s. 012007-
  • Tidskriftsartikel (refereegranskat)abstract
    • A steady improvement in material quality and process technology has made electronic silicon carbide devices commercially available. Both rectifying and switched devices can today be purchased from several vendors. This successful SiC development over the last 25 years can also be utilized for other types of devices, such as light emitting and photovoltaic devices, however, there are still critical problems related to material properties and reliability that need to be addressed. This contribution will focus on surface passivation of SiC devices. This issue is of utmost importance for further development of SiC MOSFETs, which so far has been limited by reliability and low charge carrier surface mobilities. Also bipolar devices, such as BJTs, LEDs, or PV devices will benefit from more efficient and reliable surface passivation techniques in order to maintain long charge carrier lifetimes. Silicon carbide material enables the devices to operate at higher electric fields, higher temperatures and in more radiation dense applications than silicon devices. To be able to utilize the full potential of the SiC material, it is therefore necessary to develop passivation layers that can sustain these more demanding operation conditions. In this presentation it will also be shown that passivation layers of Al2O3 deposited by atomic layer deposition have shown superior radiation hardness properties compared to traditional SiO2-based passivation layers.
  •  
8.
  • Linnarsson, Margareta K., et al. (författare)
  • Alkali metal re-distribution after oxidation of 4H-SiC
  • 2016
  • Ingår i: 16th International Conference on Silicon Carbide and Related Materials, ICSCRM 2015. - : Trans Tech Publications Ltd. - 9783035710427 ; , s. 677-680
  • Konferensbidrag (refereegranskat)abstract
    • Relocation of alkali metals sodium, potassium and cesium during oxidation of 4H-SiC has been studied by secondary ion mass spectrometry. The alkali metal source has been introduced by ion implantation before oxidation into n- and p-type 4H-SiC samples. Dry oxidation of SiC has been performed at 1150 ºC during 4, 8 and 16 h. In the formed oxide, the main part of the alkali metals diffuses out via the SiO2 surface. Close to the moving SiO2/SiC interface, a minor amount of alkali metals is retained. In the SiC material, the main amount of implanted alkali atoms is not redistributed during the oxidation, although a minor amount diffuses deeper into the samples. For ptype 4H-SiC, the diffusion deeper into the samples of the studied alkali metals decreases as the mass increases, Na+<K+<Cs+, but the sodium mobility is substantial already at 1150 °C.
  •  
9.
  • Linnarsson, Margareta K., et al. (författare)
  • Interface between Al2O3 and 4H-SiC investigated by time-of-flight medium energy ion scattering
  • 2017
  • Ingår i: Journal of Physics D. - : IOP PUBLISHING LTD. - 0022-3727 .- 1361-6463. ; 50:49
  • Tidskriftsartikel (refereegranskat)abstract
    • The formation of interfacial oxides during heat treatment of dielectric films on 4H-SiC has been studied. The 4H-SiC surface has been carefully prepared to create a clean and abrupt interface to Al2O3. An amorphous, 3 nm thick, Al2O3 film has been prepared on 4H-SiC by atomic layer deposition and rapid thermal annealing was then performed in N2O ambient at 700 degrees C and 1100 degrees C during 1 min. The samples were studied by time-of-flight medium energy ion scattering (ToF-MEIS), with sub-nanometer depth resolution and it is seen that, at both annealing temperatures, a thin SiOx (1 <= x <= 2) is formed at the interface. Our results further indicate that carbon remains in the silicon oxide in samples annealed at 700 degrees C. Additional electrical capacitance voltage measurements indicate that a large concentration of interface traps is formed at this temperature. After 1100 degrees C annealing, both MEIS and XRD measurements show that these features disappear, in accordance with electrical data.
  •  
10.
  • Paneta, Valentina, et al. (författare)
  • Ion-beam based characterization of TiN back contact interlayers for CZTS(e), thin film solar cells
  • 2019
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section B. - : Elsevier BV. - 0168-583X .- 1872-9584. ; 450, s. 262-266
  • Tidskriftsartikel (refereegranskat)abstract
    • Time-of-Flight Elastic Recoil Detection Analysis (ToF-ERDA) and Time-of-Flight Medium-Energy Ion Scattering (ToF-MEIS) have been employed to investigate the potential of TiN thin films as intermediate layers on Mo back contact in CZTS(e) solar cells. TiN films of various thicknesses (20, 50 and 200 nm) were prepared with reactive DC magnetron sputtering and atomic layer deposition on Mo/SLG (soda-lime glass) substrates and annealed ex situ in either S or Se atmosphere. In situ annealing of the samples to different temperatures was also performed in the MEIS setup together with subsequent ToF-MEIS and ERDA analysis. The results of the sample and interlayer composition profiles, layer quality and thickness distributions are discussed in context with complementary experimental findings partially obtained previously by X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD), Scanning Electron Microscopy and Scanning Transmission Electron Microscopy- Electron Energy Loss Spectroscopy (STEM - EELS).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 27

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy