SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Svenman E.) "

Sökning: WFRF:(Svenman E.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Köhler, Elof, 1980, et al. (författare)
  • Fabrication of High Temperature Thermoelectric Energy Harvesters for Wireless Sensors
  • 2013
  • Ingår i: Journal of Physics: Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 476:1, s. Art. no. 012036-
  • Konferensbidrag (refereegranskat)abstract
    • Implementing energy harvesters and wireless sensors in jet engines could simplify development and decrease costs. A thermoelectric energy harvester could be placed in the cooling channels where the temperature is between 500–900°C. This paper covers the synthesis of suitable materials and the design and fabrication of a thermoelectric module. The material choices and other design variables were done from an analytic model by numerical analysis. The module was optimized for 600–800°C with the materials Ba8Ga16Ge30 and La-doped Yb14MnSb11, both having the highest measured zT value in this region. The design goal was to be able to maintain a temperature gradient of at least 200°C with high power output. The La-doped Yb14MnSb11 was synthesized and its structure confirmed by x-ray diffraction. Measurement of properties of this material was not possible due to insufficient size of the crystals. Ba8Ga16Ge30 was synthesized and resulted in an approximated zT value of 0.83 at 700°C. Calculations based on a module with 17 couples gave a power output of 1100mW/g or 600mW/cm2 with a temperature gradient of 200K.
  •  
3.
  • Köhler, Elof, 1980, et al. (författare)
  • High temperature energy harvester for wireless sensors
  • 2014
  • Ingår i: Smart Materials and Structures. - : IOP Publishing. - 0964-1726 .- 1361-665X. ; 23:9, s. Art. no. 095042-
  • Tidskriftsartikel (refereegranskat)abstract
    • Implementing energy harvesters and wireless sensors in jet engines will simplify development and decrease costs by reducing the need for cables. Such a device could include a small thermoelectric generator placed in the cooling channels of the jet engine where the temperature is between 500-900 degrees C. This paper covers the synthesis of suitable thermoelectric materials, design of module and proof of concept tests of a thermoelectric module. The materials and other design variables were chosen based on an analytic model and numerical analysis. The module was optimized for 600-800 degrees C with the thermoelectric materials n-type Ba8Ga16Ge30 and p-type La-doped Yb14MnSb11, both with among the highest reported figure-of-merit values, zT, for bulk materials in this region. The materials were synthesized and their structures confirmed by x-ray diffraction. Proof of concept modules containing only two thermoelectric legs were built and tested at high temperatures and under high temperature gradients. The modules were designed to survive an ambient temperature gradient of up to 200 degrees C. The first measurements at low temperature showed that the thermoelectric legs could withstand a temperature gradient of 123 degrees C and still be functional. The high temperature measurement with 800 degrees C on the hot side showed that the module remained functional at this temperature.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy