SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Svenson L) "

Search: WFRF:(Svenson L)

  • Result 1-10 of 27
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Cahill, P. L., et al. (author)
  • Creating New Antifoulants Using the Tools and Tactics of Medicinal Chemistry
  • 2024
  • In: Accounts of Chemical Research. - : American Chemical Society. - 0001-4842 .- 1520-4898. ; 57:3, s. 399-
  • Journal article (peer-reviewed)abstract
    • Conspectus The unwanted accumulation of marine micro- and macroorganisms such as algae and barnacles on submerged man-made structures and vessel hulls is a major challenge for any marine operation. Known as biofouling, this problem leads to reduced hydrodynamic efficiency, significantly increased fuel usage, microbially induced corrosion, and, if not managed appropriately, eventual loss of both performance and structural integrity. Ship hull biofouling in the international maritime transport network conservatively accounts for 0.6% of global carbon emissions, highlighting the global scale and the importance of this problem. Improved antifouling strategies to limit surface colonization are paramount for essential activities such as shipping, aquaculture, desalination, and the marine renewable energy sector, representing both a multibillion dollar cost and a substantial practical challenge. From an ecological perspective, biofouling is a primary contributor to the global spread of invasive marine species, which has extensive implications for the marine environment. Historically, heavy metal-based toxic biocides have been used to control biofouling. However, their unwanted collateral ecological damage on nontarget species and bioaccumulation has led to recent global bans. With expanding human activities within aquaculture and offshore energy, it is both urgent and apparent that environmentally friendly surface protection remains key for maintaining the function of both moving and stationary marine structures. Biofouling communities are typically a highly complex network of both micro- and macroorganisms, representing a broad section of life from bacteria to macrophytes and animals. Given this diversity, it is unrealistic to expect that a single antifouling “silver bullet” will prevent colonization with the exception of generally toxic biocides. For that reason, modern and future antifouling solutions are anticipated to rely on novel coating technologies and “combination therapies” where mixtures of narrow-spectrum bioactive components are used to provide coverage across fouling species. In contrast to the existing cohort of outdated, toxic antifouling strategies, such as copper- and tributyltin-releasing paints, modern drug discovery techniques are increasingly being employed for the rational design of effective yet safe alternatives. The challenge for a medicinal chemistry approach is to effectively account for the large taxonomic diversity among fouling organisms combined with a lack of well-defined conserved molecular targets within most taxa. The current Account summarizes our work employing the tools of modern medicinal chemistry to discover, modify, and develop optimized and scalable antifouling solutions based on naturally occurring antifouling and repelling compounds from both marine and terrestrial sources. Inspiration for rational design comes from targeted studies on allelopathic natural products, natural repelling peptides, and secondary metabolites from sessile marine organisms with clean exteriors, which has yielded several efficient and promising antifouling leads.
  •  
3.
  • Didion, JP, et al. (author)
  • R2d2 Drives Selfish Sweeps in the House Mouse
  • 2016
  • In: Molecular biology and evolution. - : Oxford University Press (OUP). - 1537-1719 .- 0737-4038. ; 33:6, s. 1381-1395
  • Journal article (peer-reviewed)
  •  
4.
  •  
5.
  •  
6.
  • Haycock, Philip C., et al. (author)
  • Association Between Telomere Length and Risk of Cancer and Non-Neoplastic Diseases A Mendelian Randomization Study
  • 2017
  • In: JAMA Oncology. - : American Medical Association. - 2374-2437 .- 2374-2445. ; 3:5, s. 636-651
  • Journal article (peer-reviewed)abstract
    • IMPORTANCE: The causal direction and magnitude of the association between telomere length and incidence of cancer and non-neoplastic diseases is uncertain owing to the susceptibility of observational studies to confounding and reverse causation. OBJECTIVE: To conduct a Mendelian randomization study, using germline genetic variants as instrumental variables, to appraise the causal relevance of telomere length for risk of cancer and non-neoplastic diseases. DATA SOURCES: Genomewide association studies (GWAS) published up to January 15, 2015. STUDY SELECTION: GWAS of noncommunicable diseases that assayed germline genetic variation and did not select cohort or control participants on the basis of preexisting diseases. Of 163 GWAS of noncommunicable diseases identified, summary data from 103 were available. DATA EXTRACTION AND SYNTHESIS: Summary association statistics for single nucleotide polymorphisms (SNPs) that are strongly associated with telomere length in the general population. MAIN OUTCOMES AND MEASURES: Odds ratios (ORs) and 95% confidence intervals (CIs) for disease per standard deviation (SD) higher telomere length due to germline genetic variation. RESULTS: Summary data were available for 35 cancers and 48 non-neoplastic diseases, corresponding to 420 081 cases (median cases, 2526 per disease) and 1 093 105 controls (median, 6789 per disease). Increased telomere length due to germline genetic variation was generally associated with increased risk for site-specific cancers. The strongest associations (ORs [ 95% CIs] per 1-SD change in genetically increased telomere length) were observed for glioma, 5.27 (3.15-8.81); serous low-malignant-potential ovarian cancer, 4.35 (2.39-7.94); lung adenocarcinoma, 3.19 (2.40-4.22); neuroblastoma, 2.98 (1.92-4.62); bladder cancer, 2.19 (1.32-3.66); melanoma, 1.87 (1.55-2.26); testicular cancer, 1.76 (1.02-3.04); kidney cancer, 1.55 (1.08-2.23); and endometrial cancer, 1.31 (1.07-1.61). Associations were stronger for rarer cancers and at tissue sites with lower rates of stem cell division. There was generally little evidence of association between genetically increased telomere length and risk of psychiatric, autoimmune, inflammatory, diabetic, and other non-neoplastic diseases, except for coronary heart disease (OR, 0.78 [ 95% CI, 0.67-0.90]), abdominal aortic aneurysm (OR, 0.63 [ 95% CI, 0.49-0.81]), celiac disease (OR, 0.42 [ 95% CI, 0.28-0.61]) and interstitial lung disease (OR, 0.09 [ 95% CI, 0.05-0.15]). CONCLUSIONS AND RELEVANCE: It is likely that longer telomeres increase risk for several cancers but reduce risk for some non-neoplastic diseases, including cardiovascular diseases.
  •  
7.
  •  
8.
  •  
9.
  • Brooke, Darby G., et al. (author)
  • Antifouling activity of portimine, select semisynthetic analogues, and other microalga-derived spirocyclic imines
  • 2018
  • In: Biofouling. - : Informa UK Limited. - 0892-7014 .- 1029-2454. ; 34:8, s. 950-961
  • Journal article (peer-reviewed)abstract
    • © 2018, © 2018 Informa UK Limited, trading as Taylor & Francis Group. A range of natural products from marine invertebrates, bacteria and fungi have been assessed as leads for nature-inspired antifouling (AF) biocides, but little attention has been paid to microalgal-derived compounds. This study assessed the AF activity of the spirocyclic imine portimine (1), which is produced by the benthic mat-forming dinoflagellate Vulcanodinium rugosum. Portimine displayed potent AF activity in a panel of four macrofouling bioassays (EC 50 0.06–62.5 ng ml −1 ), and this activity was distinct from that of the related compounds gymnodimine-A (2), 13-desmethyl spirolide C (3), and pinnatoxin-F (4). The proposed mechanism of action for portimine is induction of apoptosis, based on the observation that portimine inhibited macrofouling organisms at developmental stages known to involve apoptotic processes. Semisynthetic modification of select portions of the portimine molecule was subsequently undertaken. Observed changes in bioactivity of the resulting semisynthetic analogues of portimine were consistent with portimine’s unprecedented 5-membered imine ring structure playing a central role in its AF activity.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 27

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view