SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Svensson Carolin) "

Search: WFRF:(Svensson Carolin)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Freccero, Carolin, et al. (author)
  • Sympathetic and parasympathetic neuropathy are frequent in both type 1 and type 2 diabetic patients.
  • 2004
  • In: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 27:12, s. 2936-2941
  • Journal article (peer-reviewed)abstract
    • OBJECTIVE—The aim of this study was to evaluate the frequency of sympathetic versus parasympathetic neuropathy among type 1 and type 2 diabetic patients. RESEARCH DESIGN AND METHODS—There were 43 patients with type 1 and 17 with type 2 diabetes who were investigated. Sympathetic nerve function was assessed by measurement of the vasoconstriction (VAC) index by laser Doppler perfusion imaging of a locally heated finger followed by indirect cooling. Parasympathetic nerve function was assessed by R-R interval variation during deep breathing as measured by the expiration/inspiration (E/I) ratio. Results were expressed as age-corrected z scores in SD; VAC index >1.64 SD and E/I ratio <−1.64 SD were considered abnormal. RESULTS—VAC index was abnormal in 40% with type 1 and 41% with type 2 diabetes, whereas the E/I ratio was abnormal in 42% with type 1 and 65% with type 2 diabetes. There was a clear association between VAC index and E/I ratio among type 1 (rs = 0.525; P = 0.0002) but not among type 2 (rs = 0.10) diabetic patients. Among type 2 diabetic patients, the degree of dysfunction was most severe regarding parasympathetic function (P = 0.0167). CONCLUSIONS—Sympathetic and parasympathetic neuropathy were frequent in both type 1 and type 2 diabetic patients. However, there was a difference between the two types of diabetes. Sympathetic and parasympathetic nerve functions correlated in type 1 but not in type 2 diabetic patients. The explanation for this discrepancy might be that parasympathetic nerve function was most severely affected among type 2 diabetic patients.
  •  
3.
  • Freccero, Carolin, et al. (author)
  • The influence of wavelength and probe configuration on findings of a skin vasoconstriction test when using laser Doppler perfusion devices.
  • 2006
  • In: Microvascular Research. - : Elsevier BV. - 1095-9319 .- 0026-2862. ; 71:Jan 3, s. 64-67
  • Journal article (peer-reviewed)abstract
    • The aim of this study was to establish the degree to which a standardized test based on laser Doppler blood flow measurement is dependent on the particular equipment set-up being used. For this purpose, we examined finger skin blood flow with laser Doppler instruments in 20 healthy subjects. In laser Doppler perfusion monitoring (LDPM), we used a custom-made probe with two detecting fibers placed 0.25 and 1.2 min from the illuminating fiber, respectively, and two laser Doppler perfusion imagers (LDPI) with a wavelength of 632.8 nm and 780 rim, respectively. Warming of the hand was achieved with a Peltier element, and reflex vasoconstriction was induced by immersing the other hand for 3 min into a water bath kept at 15 degrees C. As a measure for the change in skin blood flow, a vasoconstriction index (VAC: cooling/before cooling) was calculated and used for the comparison of the different devices. VAC values gathered around 0.6 for all devices. However, LDPI with a wavelength of 632.9 nm showed a slightly higher VAC index, and the difference was significant. We conclude that using a standardized test is the most appropriate for monitoring changes in blood flow rather than recording and comparing discrete values in intermittent recordings. Although a difference was noted when comparing the devices, different fiber separations and wavelengths seem then to be of little consequence. (c) 2005 Published by Elsevier Inc.
  •  
4.
  • Holmlund, F, et al. (author)
  • Sympathetic skin vasoconstriction--further evaluation using laser Doppler techniques
  • 2001
  • In: Clinical Physiology. - : Wiley. - 1365-2281 .- 0144-5979. ; 21:3, s. 287-291
  • Journal article (peer-reviewed)abstract
    • The aim of this study was to quantify the reflex sympathetic vasoconstriction in skin at different depths. Twenty healthy subjects were studied. Finger skin blood flow was measured using laser Doppler perfusion imaging (LDPI) and laser Doppler perfusion monitoring (LDPM). In LDPM, a probe with fibres separated 0.25 mm (deep) and 0.14 mm (superficial) from the illuminating fibre was used. Local heating (40 degrees C) was achieved with a Peltier element, and reflex vasoconstriction induced by immersion of the contra-lateral hand and forearm for 3 min in water at 15 degrees C. The change in skin blood flow was measured and a vasoconstriction index (VAC: cooling/before cooling) calculated. VAC indices of LDPI, LDPM-0.25 and LDPM-0.14 were 0.60, 0.59 and 0.60, respectively. The two components of the LDPM perfusion value, blood cell velocity and concentration, were studied separately. Their contributions in LDPM-0.25 were roughly the same, whereas the velocity component dominated in LDPM-0.14, although their relative responses in the two channels were similar. We conclude that sympathetic skin vasoconstriction does not significantly differ in two compartments, as probed with fibres separated by 0.25 and 0.14 mm. Blood cell velocity is influenced in a proportional way, as is concentration.
  •  
5.
  • Ljungars, Anne, et al. (author)
  • Deep mining of complex antibody phage pools generated by cell panning enables discovery of rare antibodies binding new targets and epitopes
  • 2019
  • In: Frontiers in Pharmacology. - : Frontiers Media SA. - 1663-9812. ; 10:JULY
  • Journal article (peer-reviewed)abstract
    • Phage display technology is a common approach for discovery of therapeutic antibodies. Drug candidates are typically isolated in two steps: First, a pool of antibodies is enriched through consecutive rounds of selection on a target antigen, and then individual clones are characterized in a screening procedure. When whole cells are used as targets, as in phenotypic discovery, the output phage pool typically contains thousands of antibodies, binding, in theory, hundreds of different cell surface receptors. Clonal expansion throughout the phage display enrichment process is affected by multiple factors resulting in extremely complex output phage pools where a few antibodies are highly abundant and the majority is very rare. This is a huge challenge in the screening where only a fraction of the antibodies can be tested using a conventional binding analysis, identifying mainly the most abundant clones typically binding only one or a few targets. As the expected number of antibodies and specificities in the pool is much higher, complementing methods, to reach deeper into the pool, are required, called deep mining methods. In this study, four deep mining methods were evaluated: 1) isolation of rare sub-pools of specific antibodies through selection on recombinant proteins predicted to be expressed on the target cells, 2) isolation of a sub-pool enriched for antibodies of unknown specificities through depletion of the primary phage pool on recombinant proteins corresponding to receptors known to generate many binders, 3) isolation of a sub-pool enriched for antibodies through selection on cells blocked with antibodies dominating the primary phage pool, and 4) next-generation sequencing-based analysis of isolated antibody pools followed by antibody gene synthesis and production of rare but enriched clones. We demonstrate that antibodies binding new targets and epitopes, not discovered through screening alone, can be discovered using described deep mining methods. Overall, we demonstrate the complexity of phage pools generated through selection on cells and show that a combination of conventional screening and deep mining methods are needed to fully utilize such pools. Deep mining will be important in future phenotypic antibody drug discovery efforts to increase the diversity of identified antibodies and targets.
  •  
6.
  • Mattsson, Jenny, et al. (author)
  • Sequence enrichment profiles enable target-agnostic antibody generation for a broad range of antigens
  • 2023
  • In: Cell reports methods. - 2667-2375. ; 3:5
  • Journal article (peer-reviewed)abstract
    • Phenotypic drug discovery (PDD) enables the target-agnostic generation of therapeutic drugs with novel mechanisms of action. However, realizing its full potential for biologics discovery requires new technologies to produce antibodies to all, a priori unknown, disease-associated biomolecules. We present a methodology that helps achieve this by integrating computational modeling, differential antibody display selection, and massive parallel sequencing. The method uses the law of mass action-based computational modeling to optimize antibody display selection and, by matching computationally modeled and experimentally selected sequence enrichment profiles, predict which antibody sequences encode specificity for disease-associated biomolecules. Applied to a phage display antibody library and cell-based antibody selection, ∼105 antibody sequences encoding specificity for tumor cell surface receptors expressed at 103–106 receptors/cell were discovered. We anticipate that this approach will be broadly applicable to molecular libraries coupling genotype to phenotype and to the screening of complex antigen populations for identification of antibodies to unknown disease-associated targets.
  •  
7.
  • Romero-Castillo, Laura, et al. (author)
  • Human MHC Class II and Invariant Chain Knock-in Mice Mimic Rheumatoid Arthritis with Allele Restriction in Immune Response and Arthritis Association
  • 2024
  • In: Advanced Science. - 2198-3844.
  • Journal article (peer-reviewed)abstract
    • Transgenic mice expressing human major histocompatibility complex class II (MHCII) risk alleles are widely used in autoimmune disease research, but limitations arise due to non-physiologic expression. To address this, physiologically relevant mouse models are established via knock-in technology to explore the role of MHCII in diseases like rheumatoid arthritis. The gene sequences encoding the ectodomains are replaced with the human DRB1*04:01 and 04:02 alleles, DRA, and CD74 (invariant chain) in C57BL/6N mice. The collagen type II (Col2a1) gene is modified to mimic human COL2. Importantly, DRB1*04:01 knock-in mice display physiologic expression of human MHCII also on thymic epithelial cells, in contrast to DRB1*04:01 transgenic mice. Humanization of the invariant chain enhances MHCII expression on thymic epithelial cells, increases mature B cell numbers in spleen, and improves antigen presentation. To validate its functionality, the collagen-induced arthritis (CIA) model is used, where DRB1*04:01 expression led to a higher susceptibility to arthritis, as compared with mice expressing DRB1*04:02. In addition, the humanized T cell epitope on COL2 allows autoreactive T cell-mediated arthritis development. In conclusion, the humanized knock-in mouse faithfully expresses MHCII, confirming the DRB1*04:01 alleles role in rheumatoid arthritis and being also useful for studying MHCII-associated diseases.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view