SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Swenne I) "

Search: WFRF:(Swenne I)

  • Result 1-10 of 13
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Nolte, I. M., et al. (author)
  • Genetic loci associated with heart rate variability and their effects on cardiac disease risk
  • 2017
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Journal article (peer-reviewed)abstract
    • Reduced cardiac vagal control reflected in low heart rate variability (HRV) is associated with greater risks for cardiac morbidity and mortality. In two-stage meta-analyses of genome-wide association studies for three HRV traits in up to 53,174 individuals of European ancestry, we detect 17 genome-wide significant SNPs in eight loci. HRV SNPs tag non-synonymous SNPs (in NDUFA11 and KIAA1755), expression quantitative trait loci (eQTLs) (influencing GNG11, RGS6 and NEO1), or are located in genes preferentially expressed in the sinoatrial node (GNG11, RGS6 and HCN4). Genetic risk scores account for 0.9 to 2.6% of the HRV variance. Significant genetic correlation is found for HRV with heart rate (-0.74 < r(g) < -0.55) and blood pressure (-0.35 < r(g) < -0.20). These findings provide clinically relevant biological insight into heritable variation in vagal heart rhythm regulation, with a key role for genetic variants (GNG11, RGS6) that influence G-protein heterotrimer action in GIRK-channel induced pacemaker membrane hyperpolarization.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Styrud, J, et al. (author)
  • Experimental intrauterine growth retardation in the rat causes a reduction of pancreatic B-cell mass, which persists into adulthood
  • 2005
  • In: Biology of the neonate. - : S. Karger AG. - 0006-3126. ; 88:2, s. 122-128
  • Journal article (peer-reviewed)abstract
    • <i>Background and Objectives:</i> The aim of this study was to investigate the possibility that intrauterine growth retardation (IUGR) causes alterations of glucose tolerance, insulin secretory response to glucose, and pancreatic B-cell growth, and if such changes may persist into adulthood. <i>Methods:</i> Pregnant rats were operated on day 16 of pregnancy ad modum Wigglesworth to induce IUGR. Operated rats gave birth to viable offspring but litter size was reduced. The mothers nursed their pups, which were subsequently weaned and reared to an age of 3 months in apparent good health. <i>Results:</i> At 1 day of age, IUGR pups were 10% lighter than control newborns whose mothers had been subjected to a sham operation. Pancreatic B-cell mass and insulin content were reduced by 35–40% in newborn IUGR offspring. Postnatal growth did not differ between IUGR and control animals of either sex and the difference in body weight at birth was not apparent from 1 week of age and onwards. Tests performed at 3 months of age could not demonstrate differences in glucose tolerance between IUGR and control animals. In females, but not in males, the peak insulin secretory response to glucose was lower in IUGR animals compared to controls. In the 3-month-old rats, B-cell mass was reduced by 40% in male and by 45% in female IUGR rats compared to controls, a reduction corresponding to a similar decrease in pancreatic insulin content (male reduction 48%, female reduction 45%). <i>Conclusions:</i> In the rat, IUGR causes a diminution of pancreatic B-cell mass which persists into adulthood. Normal glucose tolerance could be maintained but it is conceivable that increasing demands on insulin secretion may not be met by the reduced B-cell mass and that impaired glucose tolerance and even diabetes would hence develop.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view