SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Sylvestersen Rene) "

Search: WFRF:(Sylvestersen Rene)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Gren, Johan, et al. (author)
  • Molecular and microstructural inventory of an isolated fossil bird feather from the Eocene Fur Formation of Denmark
  • 2017
  • In: Palaeontology. - : Blackwell Publishing. - 0031-0239 .- 1475-4983. ; 60:1, s. 73-90
  • Journal article (peer-reviewed)abstract
    • An isolated, yet virtually intact contour feather (FUM-1980) from the lower Eocene Fur Formation of Denmark was analysed using multiple imaging and molecular techniques, including field emission gun scanning electron microscopy (FEG-SEM), X-ray absorption spectroscopy and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Additionally, synchrotron radiation X-ray tomographic microscopy (SRXTM) was employed in order to produce a digital reconstruction of the fossil. Under FEG-SEM, the proximal, plumulaceous part of the feather revealed masses of ovoid microstructures, about 1.7 μm long and 0.5 μm wide. Microbodies in the distal, pennaceous portion were substantially smaller (averaging 0.9 × 0.2 μm), highly elongate, and more densely packed. Generally, the microbodies in both the plumulaceous and pennaceous segments were aligned along the barbs and located within shallow depressions on the exposed surfaces. Biomarkers consistent with animal eumelanins were co-localized with the microstructures, to suggest that they represent remnant eumelanosomes (i.e. eumelanin-housing cellular organelles). Additionally, ToF-SIMS analysis revealed the presence of sulfur-containing organics – potentially indicative of pheomelanins – associated with eumelanin-like compounds. However, since there was no correlation between melanosome morphology and sulfur content, we conclude these molecular structures derive from diagenetically incorporated sulfur rather than pheomelanin. Melanosomes corresponding roughly in both size and morphology with those in the proximal part of FUM-1980 are known from contour feathers of extant parrots (Psittaciformes), an avian clade that has previously been reported from the Fur Formation.
  •  
2.
  • Heingård, Miriam, et al. (author)
  • Crypsis in the pelagic realm : evidence from exceptionally preserved fossil fish larvae from the Eocene Stolleklint Clay of Denmark
  • 2021
  • In: Palaeontology. - : John Wiley and Sons Inc. - 0031-0239 .- 1475-4983. ; 64:6, s. 805-815
  • Journal article (peer-reviewed)abstract
    • Marine deposits of earliest Eocene age in northern Jutland, Denmark, are renowned for yielding diverse teleost assemblages that have proved central for enhancing our understanding of the early evolution of many extant actinopterygian clades. In this study, we investigate diminutive larval fish fossils from the Stolleklint Clay, Ølst Formation, that retain multiple soft-tissue features preserved as distinct dark-coloured stains. To examine the elemental and molecular composition of these soft parts, we employed a combination of time-of-flight secondary ion mass spectrometry (ToF-SIMS), scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS). Our analyses revealed that the preserved structures contain chemically identifiable eumelanin intimately associated with densely aggregated microbodies that are morphologically consistent with melanosome organelles. Thus, we conclude that the carbonaceous structures represent traces of originally melanized body parts, including the eyes and peritoneum. Comparable pigmentation patterns are seen in many extant teleost larvae that use semi-transparency as a means of camouflage in pelagic environments, to suggest a similar visual appearance of the Stolleklint Clay fish fossils. This in turn suggests that adaptations for concealment and UV-protection had already evolved by the beginning of the Eocene, notably during a time interval characterized by an extreme greenhouse climate, when the global fish fauna become increasingly modern in composition. © 2021 The Authors. 
  •  
3.
  • Heingård, Miriam, et al. (author)
  • Preservation and Taphonomy of Fossil Insects from the Earliest Eocene of Denmark
  • 2022
  • In: Biology. - : MDPI. - 2079-7737. ; 11:3
  • Journal article (peer-reviewed)abstract
    • Marine sediments of the lowermost Eocene Stolleklint Clay and Fur Formation of north-western Denmark have yielded abundant well-preserved insects. However, despite a long history of research, in-depth information pertaining to preservational modes and taphonomic pathways of these exceptional animal fossils remains scarce. In this paper, we use a combination of scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) to assess the ultrastructural and molecular composition of three insect fossils: a wasp (Hymenoptera), a damselfly (Odonata) and a pair of beetle elytra (Coleoptera). Our analyses show that all specimens are preserved as organic remnants that originate from the exoskeleton, with the elytra displaying a greater level of morphological fidelity than the other fossils. TEM analysis of the elytra revealed minute features, including a multilayered epicuticle comparable to those nanostructures that generate metallic colors in modern insects. Additionally, ToF-SIMS analyses provided spectral evidence for chemical residues of the pigment eumelanin as part of the cuticular remains. To the best of our knowledge, this is the first occasion where both structural colors and chemical traces of an endogenous pigment have been documented in a single fossil specimen. Overall, our results provide novel insights into the nature of insect body fossils and additionally shed light on exceptionally preserved terrestrial insect faunas found in marine paleoenvironments. © 2022 by the authors.
  •  
4.
  • Lindgren, Johan, et al. (author)
  • Fossil insect eyes shed light on trilobite optics and the arthropod pigment screen
  • 2019
  • In: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 573:7772, s. 122-125
  • Journal article (peer-reviewed)abstract
    • Fossilized eyes permit inferences of the visual capacity of extinct arthropods1–3. However, structural and/or chemical modifications as a result of taphonomic and diagenetic processes can alter the original features, thereby necessitating comparisons with modern species. Here we report the detailed molecular composition and microanatomy of the eyes of 54-million-year-old crane-flies, which together provide a proxy for the interpretation of optical systems in some other ancient arthropods. These well-preserved visual organs comprise calcified corneal lenses that are separated by intervening spaces containing eumelanin pigment. We also show that eumelanin is present in the facet walls of living crane-flies, in which it forms the outermost ommatidial pigment shield in compound eyes incorporating a chitinous cornea. To our knowledge, this is the first record of melanic screening pigments in arthropods, and reveals a fossilization mode in insect eyes that involves a decay-resistant biochrome coupled with early diagenetic mineralization of the ommatidial lenses. The demonstrable secondary calcification of lens cuticle that was initially chitinous has implications for the proposed calcitic corneas of trilobites, which we posit are artefacts of preservation rather than a product of in vivo biomineralization4–7. Although trilobite eyes might have been partly mineralized for mechanical strength, a (more likely) organic composition would have enhanced function via gradient-index optics and increased control of lens shape.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view