SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Tajima Osamu) "

Search: WFRF:(Tajima Osamu)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Abazajian, Kevork, et al. (author)
  • CMB-S4 : Forecasting Constraints on Primordial Gravitational Waves
  • 2022
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 926:1
  • Journal article (peer-reviewed)abstract
    • CMB-S4—the next-generation ground-based cosmic microwave background (CMB) experiment—is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the universe. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semianalytic projection tool, targeted explicitly toward optimizing constraints on the tensor-to-scalar ratio, r, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2–3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments, given a desired scientific goal. To form a closed-loop process, we couple this semianalytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r > 0.003 at greater than 5σ, or in the absence of a detection, of reaching an upper limit of r < 0.001 at 95% CL.
  •  
2.
  • Ade, Peter, et al. (author)
  • The Simons Observatory : science goals and forecasts
  • 2019
  • In: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :2
  • Journal article (peer-reviewed)abstract
    • The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s. We describe the scientific goals of the experiment, motivate the design, and forecast its performance. SO will measure the temperature and polarization anisotropy of the cosmic microwave background in six frequency bands centered at: 27, 39, 93, 145, 225 and 280 GHz. The initial con figuration of SO will have three small-aperture 0.5-m telescopes and one large-aperture 6-m telescope, with a total of 60,000 cryogenic bolometers. Our key science goals are to characterize the primordial perturbations, measure the number of relativistic species and the mass of neutrinos, test for deviations from a cosmological constant, improve our understanding of galaxy evolution, and constrain the duration of reionization. The small aperture telescopes will target the largest angular scales observable from Chile, mapping approximate to 10% of the sky to a white noise level of 2 mu K-arcmin in combined 93 and 145 GHz bands, to measure the primordial tensor-to-scalar ratio, r, at a target level of sigma(r) = 0.003. The large aperture telescope will map approximate to 40% of the sky at arcminute angular resolution to an expected white noise level of 6 mu K-arcmin in combined 93 and 145 GHz bands, overlapping with the majority of the Large Synoptic Survey Telescope sky region and partially with the Dark Energy Spectroscopic Instrument. With up to an order of magnitude lower polarization noise than maps from the Planck satellite, the high-resolution sky maps will constrain cosmological parameters derived from the damping tail, gravitational lensing of the microwave background, the primordial bispectrum, and the thermal and kinematic Sunyaev-Zel'dovich effects, and will aid in delensing the large-angle polarization signal to measure the tensor-to-scalar ratio. The survey will also provide a legacy catalog of 16,000 galaxy clusters and more than 20,000 extragalactic sources.
  •  
3.
  • Ginya, Harumi, et al. (author)
  • Development of the Handy Bio-Strand and its application to genotyping of OPRM1 (A118G)
  • 2007
  • In: Analytical Biochemistry. - : Elsevier BV. - 0003-2697 .- 1096-0309. ; 367:1, s. 79-86
  • Journal article (peer-reviewed)abstract
    • We previously developed a three-dimensional microarray system, the Bio-Strand, which exhibits advantages in automated DNA analysis in combination with our Magtration Technology. In the current study, we have developed a compact system for the Bio-Strand, the Handy Bio-Strand, which consists of several tools for the preparation of Bio-Strand Tip, hybridization, and detection. Using the Handy Bio-Strand, we performed single nucleotide polymorphism (SNP) genotyping of OPRM1 (A118G) by allele-specific oligonucleotide competitive hybridization (ASOCH). DNA fragments containing SNP sites were amplified from genomic DNA by PCR and then were fixed on a microporous nylon thread. Thus, prepared Bio-Strand Tip was hybridized with allele-specific Cy5 probes (<15mer), on which the SNP site was designed to be located in the center. By optimizing the amount of competitors, the selectivity of Cy5 probes increased without a drastic signal decrease. OPRM1 (A118G) genotypes of 23 human genomes prepared from whole blood samples were determined by ASOCH using the Handy Bio-Strand. The results were perfectly consistent with those determined by PCR direct sequencing. ASOCH using the Handy Bio-Strand would be a very simple and reliable method for SNP genotyping for small laboratories and hospitals.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view