SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Tano Hanna) "

Search: WFRF:(Tano Hanna)

  • Result 1-10 of 12
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Abouzayed, Ayman, et al. (author)
  • Preclinical Evaluation of the GRPR-Targeting Antagonist RM26 Conjugated to the Albumin-Binding Domain for GRPR-Targeting Therapy of Cancer
  • 2020
  • In: Pharmaceutics. - : MDPI. - 1999-4923. ; 12:10
  • Journal article (peer-reviewed)abstract
    • The targeting of gastrin-releasing peptide receptors (GRPR) was recently proposed for targeted therapy, e.g., radiotherapy. Multiple and frequent injections of peptide-based therapeutic agents would be required due to rapid blood clearance. By conjugation of the GRPR antagonist RM26 (D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2) to an ABD (albumin-binding domain), we aimed to extend the blood circulation of peptides. The synthesized conjugate DOTA-ABD-RM26 was labelled with indium-111 and evaluated in vitro and in vivo. The labelled conjugate was stable in PBS and retained specificity and its antagonistic function against GRPR. The half-maximal inhibitory concentration (IC50) of In-nat-DOTA-ABD-RM26 in the presence of human serum albumin was 49 +/- 5 nM. [In-111]In-DOTA-ABD-RM26 had a significantly longer residence time in blood and in tumors (without a significant decrease of up to 144 h pi) than the parental RM26 peptide. We conclude that the ABD-RM26 conjugate can be used for GRPR-targeted therapy and delivery of cytotoxic drugs. However, the undesirable elevated activity uptake in kidneys abolishes its use for radionuclide therapy. This proof-of-principle study justified further optimization of the molecular design of the ABD-RM26 conjugate.
  •  
3.
  •  
4.
  • Gestin, Maxime, et al. (author)
  • Evaluation of the impact of length of peptide nucleic acid probes for tumor pretargeting
  • Other publication (other academic/artistic)abstract
    • Pretargeting is a strategy to improve the tumor-to-healthy tissue contrast in targeted nuclear imaging and therapy. The strategy relies on separating the tumor-targeting agent from the radioactive payload and combine the two in vivo. In the pretargeting approach previously studied by our group, the tumor targeting was mediated by an Affibody functionalized with a peptide nucleic acid (PNA) probe and the radionuclide was carried by a complementary PNA probe. Affibody-mediated PNA-based pretargeting was shown to increase the tumor-to-kidney ratio when evaluated in HER2-overexpressing tumor-bearing mice. The aim of the current study is to further optimize the design of the PNA probes to achieve better biodistribution properties and preconditions for a more cost-efficient production. The first important feature of the PNA pretargeting system is the tumor-to-kidney ratio, where the kidney retention is the dose-limiting factor for a clinical therapeutic application. The second aspect is the production of PNA, where the synthesis of PNA strands can be a challenge due to the steric repulsion between two PNA residues’ side chain and poor solubility in the synthesis solvent. In order to simplify the synthesis, we optimized the automation of the process using a microwave-assisted peptide synthesizer. Once the automated synthesis protocols were set up, we designed and synthesized a panel of new PNA probes, aimed at reducing the length of the PNA strands. The reduction in length was expected to simplify the synthesis workflow, but also to possibly decrease the kidney retention of the radioactive payload, as was shown in a previous study when reducing the length of the secondary PNA strand could improve the tumor-to-kidney ratio. The PNA duplexes were studied by CD and UV spectroscopy, and the binding kinetics of the interaction were studied by SPR to identify the limit in terms of number of base pairs needed to reach the high affinity expected to be required for an efficient pretargeting system. Our results showed that high affinity duplexes are formed between PNA probes having only 8 to 9 complementary bases, but that PNA probes with 6 or 7 complementary bases give rise to less stable duplexes having lower melting temperatures and faster dissociation rates.
  •  
5.
  •  
6.
  • Oroujeni, Maryam, PhD, 1982-, et al. (author)
  • Affibody-Mediated PNA-Based Pretargeted Cotreatment Improves Survival of Trastuzumab-Treated Mice Bearing HER2-Expressing Xenografts
  • 2022
  • In: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 63:7, s. 1046-1051
  • Journal article (peer-reviewed)abstract
    • Treatment of patients with human epidermal growth factor receptor 2 (HER2)-expressing tumors using the monoclonal antibody trastuzumab increases survival. The Affibody-based peptide nucleic acid (PNA)-mediated pretargeted radionuclide therapy has demonstrated efficacy against HER2-expressing xenografts in mice. Structural studies suggest that Affibody molecules and trastuzumab bind to different epitopes on HER2. The aim of this study was to test the hypothesis that a combination of PNA-mediated pretargeted radionuclide therapy and trastuzumab treatment of HER2-expressing xenografts can extend survival compared with monotherapies. Methods: Mutual interference of the primary pretargeting probe Z(HER2:342)-SR-HP1 and trastuzumab in binding to HER2-expressing cell lines was investigated in vitro. Experimental therapy evaluated the survival of mice bearing HER2-expressing SKOV-3 xenografts after treatment with vehicle, trastuzumab only, pretargeting using Affibody-PNA chimera Z(HER2:342)-SR-HP1 and complementary probe Lu-177-HP2, and combination of trastuzumab and pretargeting. The ethical permit limited the study to 90 d. The animals'weightsweremonitored during the study. After study termination, samples of liver and kidneys were evaluated by a veterinary pathologist for toxicity signs. Results: The presence of a large molar excess of trastuzumab had no influence on the affinity of Z(HER2:342)-SR-HP1 binding to HER2-expressing cells in vitro. The affinity of trastuzumab was not affected by a large excess of Z(HER2:342)-SR-HP1. Themedian survival of mice treated with trastuzumab (75.5 d) was significantly longer than the survival of mice treated with a vehicle (59.5 d). Median survival of mice treated with pretargeting was not reached by day 90. Six mice of 10 in this group survived, and 2 had complete remission. All mice in the combination treatment group survived, and tumors in 7 mice had disappeared at study termination. There was no significant difference between animal weights in the different treatment groups. No significant pathologic alterations were detected in livers and kidneys of treated animals. Conclusion: Treatment of mice bearing HER2-expressing xenografts with the combination of trastuzumab and Affibody-mediated PNA-based radionuclide pretargeting significantly increased survival compared with monotherapies. Cotreatment was not toxic for normal tissues.
  •  
7.
  •  
8.
  •  
9.
  • Tano, Hanna, et al. (author)
  • Comparative Evaluation of Novel Lu-177-Labeled PNA Probes for Affibody-Mediated PNA-Based Pretargeting
  • 2021
  • In: Cancers. - : MDPI AG. - 2072-6694. ; 13:3
  • Journal article (peer-reviewed)abstract
    • Simple Summary Affibody molecules are small, engineered affinity proteins based on a nonimmunoglobulin scaffold. Affibody-based radionuclide imaging probes have demonstrated excellent tumor targeting. However, the renal clearance of affibody molecules is accompanied by high reabsorption and retention of activity in the kidney, which prevents their use for radionuclide therapy. We have previously shown the feasibility of overcoming the high renal uptake using a pretargeting approach for affibody-mediated therapy based on peptide nucleic acid (PNA) hybridization. In this study, we test the hypothesis that shortening the PNA pretargeting probes would further increase the difference between the accumulation of radiometals in tumor xenografts and in kidneys. A series of novel PNA probes has been designed and evaluated in vitro and in vivo. We have found that a variant containing 9 nucleobases enables a two-fold increase of the tumor-to-kidney dose ratio compared with a variant containing 15 nucleobases. This creates preconditions for more efficient therapy of cancer. Affibody-mediated PNA-based pretargeting is a promising approach to radionuclide therapy of HER2-expressing tumors. In this study, we test the hypothesis that shortening the PNA pretargeting probes would increase the tumor-to-kidney dose ratio. The primary probe Z(HER2:342)-SR-HP15 and the complementary secondary probes HP16, HP17, and HP18, containing 9, 12, and 15 nucleobases, respectively, and carrying a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelator were designed, synthesized, characterized in vitro, and labeled with Lu-177. In vitro pretargeting was studied in HER2-expressing SKOV3 and BT474 cell lines. The biodistribution of these novel probes was evaluated in immunodeficient mice bearing SKOV3 xenografts and compared to the previously studied [Lu-177]Lu-HP2. Characterization confirmed the formation of high-affinity duplexes between HP15 and the secondary probes, with the affinity correlating with the length of the complementary PNA sequences. All the PNA-based probes were bound specifically to HER2-expressing cells in vitro. In vivo studies demonstrated HER2-specific uptake of all Lu-177-labeled probes in xenografts in a pretargeting setting. The ratio of cumulated radioactivity in the tumor to the radioactivity in kidneys was dependent on the secondary probe's size and decreased with an increased number of nucleobases. The shortest PNA probe, [Lu-177]Lu-HP16, showed the highest tumor-to-kidney ratio. [Lu-177]Lu-HP16 is the most promising secondary probe for affibody-mediated tumor pretargeting.
  •  
10.
  • Tano, Hanna (author)
  • PNA and affinity protein tools for selective tumor targeting of radiopharmaceuticals
  • 2022
  • Doctoral thesis (other academic/artistic)abstract
    • Targeted radiotherapy of cancer intends to selectively deliver cytotoxic radionuclides to tumor cells. Affinity proteins of various kinds are explored for this task, and depending on the affinity protein used, different challenges arise. Full-length antibodies are typically associated with long serum half-life, leading to high systemic toxicity, while smaller affinity ligands such as engineered scaffold proteins, antibody fragments or peptides, usually demonstrate high radioactive uptake in kidneys. The smallest affinity ligands furthermore suffer from low therapeutic efficacy due to their fast wash-out, thus demanding frequent administrations of the radio-conjugate to reach a therapeutic effect.  These issues were addressed in this thesis, where small affinity ligands (an Affibody molecule, a single domain antibody fragment and a peptide) have been explored as targeting agents for the cancer targets HER2, CD38 and GRPR, respectively. The Affibody molecule and the single domain antibody fragment were used in a pretargeting setting where high selective hybridization are used as recognition tags between peptide nucleic acid (PNA) strands on the tumor targeting primary agent and the radiolabelled secondary agent. In papers I and II, different sets of PNA hybridization probes were evaluated, in vitro and in vivo. In paper I, we demonstrate that the shortest tested secondary PNA probe (the 9-mer HP16) had the most favourable biodistribution profile with high tumor uptake along with the lowest kidney uptake. In paper II, we produced a set of shorter primary PNA probes, aiming for simplified production, and new sets of even shorter secondary PNA probes. A secondary 8-mer was identified as suitable for testing in cell assays and in vivo together with HER2-binding Affibody-PNA conjugates with varying length of the primary PNA probe, in order to determine if the smaller hydrodynamic range would further improve the biodistribution properties. In paper III, the Affibody-mediated PNA-based pretargeting strategy was evaluated as a monotherapy and as a co-treatment strategy with trastuzumab, to treat mice bearing HER2-positive tumors. Mice treated with the co-treatment strategy had significantly longer survival compared to other groups. In paper IV, the feasibility of using the PNA pretargeting strategy in combination with another affinity protein (a single domain antibody fragment) was evaluated in a CD38-expressing cell line. In paper V, the GRPR-binding peptide RM26 was conjugated to an albumin-binding domain, with the aim to achieve a high tumor uptake over time. The RM26-ABD conjugate did demonstrate good tumor uptake over time. However, the conjugate also demonstrated high kidney uptake, limiting its use as a therapeutic construct. In conclusion, the work presented in this thesis shows strategies for selective tumor targeting of radiopharmaceuticals using affinity proteins and PNA-mediated pretargeting.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view